Spaces:
Sleeping
Sleeping
Repository Documentation | |
This document provides a comprehensive overview of the repository's structure and contents. | |
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format. | |
In this section, directories and files are listed using tree branches to indicate their structure and relationships. | |
Following the tree representation, the 'File Content' section details the contents of each file in the repository. | |
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path, | |
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker. | |
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository. | |
Directory/File Tree Begins --> | |
/ | |
├── README.md | |
├── app.py | |
├── app.py.bak | |
├── bible.py | |
├── database-structure.txt | |
├── gematria.py | |
├── hindu.py | |
├── populate_translations.py | |
├── quran.py | |
├── requirements-all.txt | |
├── requirements.txt | |
├── texts | |
│ ├── bible | |
│ ├── mahabharata | |
│ ├── quran | |
│ ├── rigveda | |
│ ├── torah | |
│ └── tripitaka | |
├── torah.py | |
├── translation_utils.py | |
├── tripitaka.py | |
├── util.py | |
└── utils.py | |
<-- Directory/File Tree Ends | |
File Content Begin --> | |
[File Begins] README.md | |
--- | |
title: Book of Souls - Search your name+day (journal) oracle with ELS over Torah, Bible, Quran, Rigveda, Tripitaka | |
emoji: 📊 | |
colorFrom: green | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 4.39.0 | |
app_file: app.py | |
pinned: false | |
--- | |
This application searches for equidistant letter sequences (ELS) in the Torah, Bible, Quran, and Rigveda. It also integrates a network search functionality to find related phrases based on gematria. | |
**Inputs:** | |
* **Target Language for Translation:** The language to translate the results into. | |
* **Date to investigate (optional):** A date to include in the gematria calculation. | |
* **Language of the person/topic (optional) (Date Word Language):** The language to use for converting the date to words. | |
* **Name and/or Topic (required):** The text to calculate the gematria for. | |
* **Jump Width (Steps) (optional) for ELS:** The step size for the ELS search. | |
* **Round (1) / Round (2) (optional):** The number of rounds for the ELS search (positive or negative). | |
* **Include Torah / Include Bible / Include Quran / Include Rigveda:** Checkboxes to select which texts to search. | |
* **Strip Spaces from Books / Strip Text in Braces from Books / Strip Diacritics from Books:** Options for text preprocessing. | |
**Outputs:** | |
* **ELS Results:** A dataframe containing the ELS search results. | |
* **Most Frequent Phrase in Network Search:** The most frequent phrase found in the network search. | |
* **JSON Output:** A JSON representation of the search results. | |
**How to Use:** | |
1. Enter the name or topic you want to investigate. | |
2. Optionally, select a date and the language for its representation. | |
3. Set the jump width (steps) and rounds for the ELS search. | |
4. Choose which texts to include in the search. | |
5. Configure text preprocessing options as needed. | |
6. Click "Search with ELS". | |
7. The results will be displayed in the output sections. You can copy the JSON output using the provided button. | |
**Network Search:** | |
The network search functionality uses the calculated gematria of the ELS results to search a database for phrases with the same gematria. It displays the most frequent matching phrase. If no exact match is found, it attempts to find the closest match based on similarity and word count difference. | |
[File Ends] README.md | |
[File Begins] app.py | |
#TODO: Quran results have numbers | |
import logging | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
import gradio as gr | |
import torah | |
import bible | |
import quran | |
import hindu | |
import tripitaka | |
from utils import number_to_ordinal_word, custom_normalize, date_to_words, translate_date_to_words | |
from gematria import calculate_gematria, strip_diacritics | |
import pandas as pd | |
from deep_translator import GoogleTranslator | |
from gradio_calendar import Calendar | |
from datetime import datetime, timedelta | |
import math | |
import json | |
import re | |
import sqlite3 | |
from collections import defaultdict | |
from typing import List, Tuple | |
import rich | |
from fuzzywuzzy import fuzz | |
import calendar | |
import translation_utils | |
import hashlib | |
translation_utils.create_translation_table() | |
# Create a translator instance *once* globally | |
translator = GoogleTranslator(source='auto', target='auto') | |
LANGUAGES_SUPPORTED = translator.get_supported_languages(as_dict=True) # Corrected dictionary name | |
LANGUAGE_CODE_MAP = LANGUAGES_SUPPORTED # Use deep_translator's mapping directly | |
# --- Constants --- | |
DATABASE_FILE = 'gematria.db' | |
MAX_PHRASE_LENGTH_LIMIT = 20 | |
ELS_CACHE_DB = "els_cache.db" | |
DATABASE_TIMEOUT = 60 | |
# --- Database Initialization --- | |
def initialize_database(): | |
global conn | |
conn = sqlite3.connect(DATABASE_FILE) | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS results ( | |
gematria_sum INTEGER, | |
words TEXT, | |
translation TEXT, | |
book TEXT, | |
chapter INTEGER, | |
verse INTEGER, | |
phrase_length INTEGER, | |
word_position TEXT, | |
PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position) | |
) | |
''') | |
cursor.execute(''' | |
CREATE INDEX IF NOT EXISTS idx_results_gematria | |
ON results (gematria_sum) | |
''') | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS processed_books ( | |
book TEXT PRIMARY KEY, | |
max_phrase_length INTEGER | |
) | |
''') | |
conn.commit() | |
# --- Initialize Database --- | |
initialize_database() | |
# --- ELS Cache Functions --- | |
def create_els_cache_table(): | |
with sqlite3.connect(ELS_CACHE_DB) as conn: | |
conn.execute(''' | |
CREATE TABLE IF NOT EXISTS els_cache ( | |
query_hash TEXT PRIMARY KEY, | |
results TEXT | |
) | |
''') | |
def get_query_hash(func, *args, **kwargs): | |
key = (func.__name__, args, tuple(sorted(kwargs.items()))) | |
return hashlib.sha256(json.dumps(key).encode()).hexdigest() | |
def cached_process_json_files(func, *args, **kwargs): | |
query_hash = get_query_hash(func, *args, **kwargs) | |
try: | |
with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT results FROM els_cache WHERE query_hash = ?", (query_hash,)) | |
result = cursor.fetchone() | |
if result: | |
logger.info(f"Cache hit for query: {query_hash}") | |
return json.loads(result[0]) | |
except sqlite3.Error as e: | |
logger.error(f"Database error checking cache: {e}") | |
logger.info(f"Cache miss for query: {query_hash}") | |
results = func(*args, **kwargs) | |
try: | |
with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn: | |
cursor = conn.cursor() | |
cursor.execute("INSERT INTO els_cache (query_hash, results) VALUES (?, ?)", (query_hash, json.dumps(results))) | |
conn.commit() | |
except sqlite3.Error as e: | |
logger.error(f"Database error caching results: {e}") | |
return results | |
# --- Helper Functions (from Network app.py) --- | |
def flatten_text(text: List) -> str: | |
if isinstance(text, list): | |
return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text) | |
return text | |
def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]: | |
global conn | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
SELECT words, book, chapter, verse, phrase_length, word_position | |
FROM results | |
WHERE gematria_sum = ? AND phrase_length <= ? | |
''', (gematria_sum, max_words)) | |
results = cursor.fetchall() | |
return results | |
def get_most_frequent_phrase(results): | |
phrase_counts = defaultdict(int) | |
for words, book, chapter, verse, phrase_length, word_position in results: | |
phrase_counts[words] += 1 | |
most_frequent_phrase = max(phrase_counts, key=phrase_counts.get) if phrase_counts else None # Handle empty results | |
return most_frequent_phrase | |
# --- Functions from BOS app.py --- | |
def create_language_dropdown(label, default_value='English', show_label=True): # Default value must be in LANGUAGE_CODE_MAP | |
return gr.Dropdown( | |
choices=list(LANGUAGE_CODE_MAP.keys()), # Correct choices | |
label=label, | |
value=default_value, | |
show_label=show_label | |
) | |
def calculate_gematria_sum(text, date_words): | |
if text or date_words: | |
combined_input = f"{text} {date_words}" | |
logger.info(f"searching for input: {combined_input}") | |
numbers = re.findall(r'\d+', combined_input) | |
text_without_numbers = re.sub(r'\d+', '', combined_input) | |
number_sum = sum(int(number) for number in numbers) | |
text_gematria = calculate_gematria(strip_diacritics(text_without_numbers)) | |
total_sum = text_gematria + number_sum | |
return total_sum | |
else: | |
return None | |
def perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka): | |
if step == 0 or rounds_combination == "0,0": | |
return None | |
results = {} | |
length = 0 | |
selected_language_long = tlang # From the Gradio dropdown (long form) | |
tlang = LANGUAGES_SUPPORTED.get(selected_language_long) #Get the short code. | |
if tlang is None: # Handle unsupported languages | |
tlang = "en" | |
logger.warning(f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).") | |
if include_torah: | |
logger.debug(f"Arguments for Torah: {(1, 39, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk)}") | |
results["Torah"] = cached_process_json_files(torah.process_json_files, 1, 39, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) | |
else: | |
results["Torah"] = [] | |
if include_bible: | |
results["Bible"] = cached_process_json_files(bible.process_json_files, 40, 66, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) | |
else: | |
results["Bible"] = [] | |
if include_quran: | |
results["Quran"] = cached_process_json_files(quran.process_json_files, 1, 114, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) | |
else: | |
results["Quran"] = [] | |
if include_hindu: | |
results["Rig Veda"] = cached_process_json_files(hindu.process_json_files, 1, 10, step, rounds_combination, length, tlang, False, strip_in_braces, strip_diacritics_chk) | |
else: | |
results["Rig Veda"] = [] | |
if include_tripitaka: | |
results["Tripitaka"] = cached_process_json_files(tripitaka.process_json_files, 1, 52, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) | |
else: | |
results["Tripitaka"] = [] | |
return results | |
def add_24h_projection(results_dict): #Now takes a dictionary of results | |
for book_name, results in results_dict.items(): # Iterate per book | |
num_results = len(results) | |
if num_results > 0: | |
time_interval = timedelta(minutes=24 * 60 / num_results) | |
current_time = datetime.min.time() | |
for i in range(num_results): | |
next_time = (datetime.combine(datetime.min, current_time) + time_interval).time() | |
time_range_str = f"{current_time.strftime('%H:%M')}-{next_time.strftime('%H:%M')}" | |
results[i]['24h Projection'] = time_range_str | |
current_time = next_time | |
return results_dict | |
def add_monthly_projection(results_dict, selected_date): | |
if selected_date is None: | |
return results_dict # Return if no date is selected | |
for book_name, results in results_dict.items(): # Iterate per book | |
num_results = len(results) | |
if num_results > 0: | |
days_in_month = calendar.monthrange(selected_date.year, selected_date.month)[1] | |
total_seconds = (days_in_month - 1) * 24 * 3600 | |
seconds_interval = total_seconds / num_results | |
start_datetime = datetime(selected_date.year, selected_date.month, 1) | |
current_datetime = start_datetime | |
for i in range(num_results): | |
next_datetime = current_datetime + timedelta(seconds=seconds_interval) | |
current_date = current_datetime.date() # Moved assignment inside loop | |
next_date = next_datetime.date() | |
date_range_str = f"{current_date.strftime('%h %d')} - {next_date.strftime('%h %d')}" | |
results[i]['Monthly Projection'] = date_range_str | |
current_datetime = next_datetime # Add this | |
current_date = next_datetime.date() # Add this too | |
return results_dict | |
def add_yearly_projection(results_dict, selected_date): #Correct name, handle dictionary input | |
if selected_date is None: | |
return results_dict # Return if no date is selected | |
for book_name, results in results_dict.items(): # Iterate per book | |
num_results = len(results) | |
if num_results > 0: | |
days_in_year = 366 if calendar.isleap(selected_date.year) else 365 | |
total_seconds = (days_in_year - 1) * 24 * 3600 | |
seconds_interval = total_seconds / num_results | |
start_datetime = datetime(selected_date.year, 1, 1) | |
current_datetime = start_datetime | |
for i in range(num_results): | |
next_datetime = current_datetime + timedelta(seconds=seconds_interval) | |
current_date = current_datetime.date() # Move assignment inside loop | |
next_date = next_datetime.date() | |
date_range_str = f"{current_date.strftime('%b %d')} - {next_date.strftime('%b %d')}" | |
results[i]['Yearly Projection'] = date_range_str | |
current_datetime = next_datetime # Update current datetime for next iteration | |
return results_dict | |
def sort_results(results): | |
def parse_time(time_str): | |
try: | |
hours, minutes = map(int, time_str.split(':')) | |
return hours * 60 + minutes # Convert to total minutes | |
except ValueError: | |
return 24 * 60 # Sort invalid times to the end | |
return sorted(results, key=lambda x: ( | |
parse_time(x.get('24h Projection', '23:59').split('-')[0]), # Sort by start time first | |
parse_time(x.get('24h Projection', '23:59').split('-')[1]) # Then by end time | |
)) | |
# --- Main Gradio App --- | |
with gr.Blocks() as app: | |
with gr.Column(): | |
with gr.Row(): | |
tlang = create_language_dropdown("Target Language for Result Translation", default_value='english') | |
selected_date = Calendar(type="datetime", label="Date to investigate (optional)", info="Pick a date from the calendar") | |
use_day = gr.Checkbox(label="Use Day", info="Check to include day in search", value=True) | |
use_month = gr.Checkbox(label="Use Month", info="Check to include month in search", value=True) | |
use_year = gr.Checkbox(label="Use Year", info="Check to include year in search", value=True) | |
date_language_input = create_language_dropdown("Language of the person/topic (optional) (Date Word Language)", default_value='english') | |
with gr.Row(): | |
gematria_text = gr.Textbox(label="Name and/or Topic (required)", value="Hans Albert Einstein Mileva Marity-Einstein") | |
date_words_output = gr.Textbox(label="Date in Words Translated (optional)") | |
gematria_result = gr.Number(label="Journal Sum") | |
#with gr.Row(): | |
with gr.Row(): | |
step = gr.Number(label="Jump Width (Steps) for ELS") | |
float_step = gr.Number(visible=False, value=1) | |
half_step_btn = gr.Button("Steps / 2") | |
double_step_btn = gr.Button("Steps * 2") | |
with gr.Column(): | |
round_x = gr.Number(label="Round (1)", value=1) | |
round_y = gr.Number(label="Round (2)", value=-1) | |
rounds_combination = gr.Textbox(label="Combined Rounds", value="1,-1") | |
with gr.Row(): | |
include_torah_chk = gr.Checkbox(label="Include Torah", value=True) | |
include_bible_chk = gr.Checkbox(label="Include Bible", value=True) | |
include_quran_chk = gr.Checkbox(label="Include Quran", value=True) | |
include_hindu_chk = gr.Checkbox(label="Include Rigveda", value=True) | |
include_tripitaka_chk = gr.Checkbox(label="Include Tripitaka", value=True) | |
merge_results_chk = gr.Checkbox(label="Merge Results (Torah-Bible-Quran)", value=True) | |
strip_spaces = gr.Checkbox(label="Strip Spaces from Books", value=True) | |
strip_in_braces = gr.Checkbox(label="Strip Text in Braces from Books", value=True) | |
strip_diacritics_chk = gr.Checkbox(label="Strip Diacritics from Books", value=True) | |
translate_btn = gr.Button("Search with ELS") | |
# --- Output Components --- | |
markdown_output = gr.Dataframe(label="ELS Results") | |
most_frequent_phrase_output = gr.Textbox(label="Most Frequent Phrase in Network Search") | |
json_output = gr.Textbox(label="JSON Output") | |
copy_json_button = gr.Button("Copy JSON to Clipboard") | |
# --- Hidden HTML component to hold the JavaScript function --- | |
html_js = gr.HTML( | |
""" | |
<script> | |
function copyJSON(json_string) { | |
navigator.clipboard.writeText(json_string); | |
} | |
</script> | |
""", visible=False # Hide the HTML component | |
) | |
# --- Event Handlers --- | |
def update_date_words(selected_date, date_language_input, use_day, use_month, use_year): | |
if selected_date is None: | |
return "" | |
if not use_year and not use_month and not use_day: | |
return translate_date_to_words(selected_date, date_language_input) | |
year = selected_date.year if use_year else None | |
month = selected_date.month if use_month else None | |
day = selected_date.day if use_day else None | |
if year is not None and month is not None and day is not None: | |
date_obj = selected_date | |
elif year is not None and month is not None: | |
date_obj = str(f"{year}-{month}") | |
elif year is not None: | |
date_obj = str(f"{year}") | |
else: # Return empty string if no date components are selected | |
return "" | |
date_in_words = date_to_words(date_obj) | |
translator = GoogleTranslator(source='auto', target=date_language_input) | |
translated_date_words = translator.translate(date_in_words) | |
return custom_normalize(translated_date_words) | |
def update_journal_sum(gematria_text, date_words_output): | |
sum_value = calculate_gematria_sum(gematria_text, date_words_output) | |
return sum_value, sum_value, sum_value | |
def update_rounds_combination(round_x, round_y): | |
return f"{int(round_x)},{int(round_y)}" | |
def update_step_half(float_step): | |
new_step = math.ceil(float_step / 2) | |
return new_step, float_step / 2 | |
def update_step_double(float_step): | |
new_step = math.ceil(float_step * 2) | |
return new_step, float_step * 2 | |
def find_closest_phrase(target_phrase, phrases): | |
best_match = None | |
best_score = 0 | |
logging.debug(f"Target phrase for similarity search: {target_phrase}") # Log target phrase | |
for phrase, _, _, _, _, _ in phrases: | |
word_length_diff = abs(len(target_phrase.split()) - len(phrase.split())) | |
similarity_score = fuzz.ratio(target_phrase, phrase) | |
combined_score = similarity_score - word_length_diff | |
logging.debug(f"Comparing with phrase: {phrase}") # Log each phrase being compared | |
logging.debug( | |
f"Word Length Difference: {word_length_diff}, Similarity Score: {similarity_score}, Combined Score: {combined_score}") # Log scores | |
if combined_score > best_score: | |
best_score = combined_score | |
best_match = phrase | |
logging.debug(f"Closest phrase found: {best_match} with score: {best_score}") # Log the best match | |
return best_match | |
def perform_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka, gematria_text, date_words_output, selected_date): | |
# Inside perform_search | |
els_results = perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, | |
strip_diacritics_chk, include_torah, include_bible, include_quran, | |
include_hindu, | |
include_tripitaka) | |
# --- Network Search Integration --- | |
most_frequent_phrases = {} | |
combined_and_sorted_results = [] # Combined list to hold all results | |
for book_name, book_results in els_results.items(): | |
if book_results: # Add this check to ensure book_results is not empty | |
most_frequent_phrases[book_name] = "" # Default value | |
for result in book_results: | |
try: | |
gematria_sum = calculate_gematria(result['result_text']) # Calculate gematria | |
max_words = len(result['result_text'].split()) | |
matching_phrases = search_gematria_in_db(gematria_sum, max_words) | |
max_words_limit = 20 | |
while not matching_phrases and max_words < max_words_limit: # Increase max_words for more results | |
max_words += 1 | |
matching_phrases = search_gematria_in_db(gematria_sum, max_words) | |
if matching_phrases: | |
most_frequent_phrase = get_most_frequent_phrase(matching_phrases) | |
most_frequent_phrases[book_name] = most_frequent_phrase | |
else: | |
closest_phrase = find_closest_phrase(result['result_text'], | |
search_gematria_in_db(gematria_sum, max_words_limit)) | |
most_frequent_phrases[ | |
book_name] = closest_phrase or "" # Update most frequent phrases even if no phrase found | |
result['Most Frequent Phrase'] = most_frequent_phrases[book_name] | |
if 'book' in result: | |
if isinstance(result['book'], int): # Torah, Bible, Quran case | |
result['book'] = f"{book_name} {result['book']}." | |
combined_and_sorted_results.append(result) | |
except KeyError as e: | |
print(f"DEBUG: KeyError - Key '{e.args[0]}' not found in result. Skipping this result.") | |
continue | |
# --- Batch Translation --- | |
selected_language_long = tlang # From the Gradio dropdown (long form) | |
tlang_short = LANGUAGES_SUPPORTED.get(selected_language_long) #Get the short code. | |
if tlang_short is None: # Handle unsupported languages | |
tlang_short = "en" | |
logger.warning(f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).") | |
phrases_to_translate = [result.get('Most Frequent Phrase', '') for result in combined_and_sorted_results] | |
translated_phrases = translation_utils.batch_translate(phrases_to_translate, tlang_short) # Use short code here | |
result_texts_to_translate = [result.get('result_text', '') for result in combined_and_sorted_results] | |
translated_result_texts = translation_utils.batch_translate(result_texts_to_translate, tlang_short) # And here | |
for i, result in enumerate(combined_and_sorted_results): | |
result['translated_text'] = translated_result_texts.get(result_texts_to_translate[i], | |
None) # Store translated_text | |
result['Translated Most Frequent Phrase'] = translated_phrases.get(phrases_to_translate[i], | |
None) # Use get to handle missing keys | |
# Time Projections (using els_results dictionary) | |
updated_els_results = add_24h_projection(els_results) # Use original els_results dictionary | |
updated_els_results = add_monthly_projection(updated_els_results, selected_date) #Call correct functions with correct params | |
updated_els_results = add_yearly_projection(updated_els_results, selected_date) | |
combined_and_sorted_results = [] | |
for book_results in updated_els_results.values(): #Combine results for dataframe and json | |
combined_and_sorted_results.extend(book_results) | |
combined_and_sorted_results = sort_results(combined_and_sorted_results) #sort combined results | |
df = pd.DataFrame(combined_and_sorted_results) | |
df.index = range(1, len(df) + 1) | |
df.reset_index(inplace=True) | |
df.rename(columns={'index': 'Result Number'}, inplace=True) | |
for i, result in enumerate(combined_and_sorted_results): # Iterate through the combined list | |
result['Result Number'] = i + 1 | |
search_config = { | |
"step": step, | |
"rounds_combination": rounds_combination, | |
"target_language": tlang, | |
"strip_spaces": strip_spaces, | |
"strip_in_braces": strip_in_braces, | |
"strip_diacritics": strip_diacritics_chk, | |
"include_torah": include_torah, | |
"include_bible": include_bible, | |
"include_quran": include_quran, | |
"include_hindu": include_hindu, | |
"include_tripitaka": include_tripitaka, | |
"gematria_text": gematria_text, | |
"date_words": date_words_output | |
} | |
output_data = { | |
"search_configuration": search_config, | |
"results": combined_and_sorted_results # Use the combined list here | |
} | |
json_data = json.dumps(output_data, ensure_ascii=False, indent=4) | |
# --- Return results --- | |
combined_most_frequent = "\n".join( | |
f"{book}: {phrase}" for book, phrase in most_frequent_phrases.items()) # Combine phrases | |
return df, combined_most_frequent, json_data | |
# --- Event Triggers --- | |
round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination) | |
round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination) | |
selected_date.change(update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output]) | |
date_language_input.change(update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output]) | |
gematria_text.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step]) | |
date_words_output.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step]) | |
half_step_btn.click(update_step_half, inputs=[float_step], outputs=[step, float_step]) | |
double_step_btn.click(update_step_double, inputs=[float_step], outputs=[step, float_step]) | |
translate_btn.click( | |
perform_search, | |
inputs=[step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah_chk, include_bible_chk, include_quran_chk, include_hindu_chk, include_tripitaka_chk, gematria_text, date_words_output, selected_date], | |
outputs=[markdown_output, most_frequent_phrase_output, json_output] | |
) | |
app.load( | |
update_date_words, | |
inputs=[selected_date, date_language_input, use_day, use_month, use_year], # Include all 5 inputs | |
outputs=[date_words_output] | |
) | |
copy_json_button.click( | |
js=""" | |
(json_string) => { | |
copyJSON(json_string); // Call the JavaScript function defined in the HTML component | |
}""", | |
inputs=json_output, # Make sure json_output is an input | |
) | |
use_day.change( | |
update_date_words, | |
inputs=[selected_date, date_language_input, use_day, use_month, use_year], | |
outputs=[date_words_output] | |
) | |
use_month.change( | |
update_date_words, | |
inputs=[selected_date, date_language_input, use_day, use_month, use_year], | |
outputs=[date_words_output] | |
) | |
use_year.change( | |
update_date_words, | |
inputs=[selected_date, date_language_input, use_day, use_month, use_year], | |
outputs=[date_words_output] | |
) | |
def checkbox_behavior(use_day_value, use_month_value): | |
if use_day_value: # Tick month and year automatically when day is ticked. | |
return True, True | |
return use_month_value, True # return month value unchanged and automatically tick year if month is checked | |
use_day.change(checkbox_behavior, inputs=[use_day, use_month], outputs=[use_month, use_year]) | |
use_month.change(checkbox_behavior, inputs=[use_day, use_month], outputs=[use_month, use_year]) #No need for use_day here, day won't be changed by month | |
if __name__ == "__main__": | |
app.launch(share=False) | |
[File Ends] app.py | |
[File Begins] app.py.bak | |
import gradio as gr | |
import json | |
import re | |
import sqlite3 | |
import logging | |
from collections import defaultdict | |
from typing import Tuple, Dict, List | |
# Assuming you have these files in your project | |
from util import process_json_files | |
from gematria import calculate_gematria | |
from deep_translator import GoogleTranslator, exceptions | |
from urllib.parse import quote_plus | |
from tqdm import tqdm | |
# Constants | |
DATABASE_FILE = 'gematria.db' | |
MAX_PHRASE_LENGTH_LIMIT = 20 | |
BATCH_SIZE = 10000 | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Global variables | |
conn: sqlite3.Connection = None | |
translator: GoogleTranslator = None | |
book_names: Dict[int, str] = {} | |
gematria_cache: Dict[Tuple[int, int], List[Tuple[str, str, int, int, int, str]]] = {} | |
translation_cache: Dict[str, str] = {} | |
total_word_count: int = 0 # Global counter for word position | |
def initialize_database() -> None: | |
"""Initializes the SQLite database.""" | |
global conn | |
conn = sqlite3.connect(DATABASE_FILE) | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS results ( | |
gematria_sum INTEGER, | |
words TEXT, | |
translation TEXT, | |
book TEXT, | |
chapter INTEGER, | |
verse INTEGER, | |
phrase_length INTEGER, | |
word_position TEXT, | |
PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position) | |
) | |
''') | |
cursor.execute(''' | |
CREATE INDEX IF NOT EXISTS idx_results_gematria | |
ON results (gematria_sum) | |
''') | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS processed_books ( | |
book TEXT PRIMARY KEY, | |
max_phrase_length INTEGER | |
) | |
''') | |
conn.commit() | |
def initialize_translator() -> None: | |
"""Initializes the Google Translator.""" | |
global translator | |
translator = GoogleTranslator(source='iw', target='en') | |
logging.info("Translator initialized.") | |
def process_book(book_id: int, max_phrase_length: int, cursor): | |
"""Processes a single book and returns phrases to insert.""" | |
global book_names, total_word_count | |
book_data = process_json_files(book_id, book_id) | |
phrases_to_insert = [] | |
if book_id in book_data: | |
book_data = book_data[book_id] | |
if 'title' not in book_data or not isinstance(book_data['title'], str): | |
logging.warning(f"Skipping book {book_id} due to missing 'title' field.") | |
return phrases_to_insert | |
title = book_data['title'] | |
book_names[book_id] = title | |
# Check if this book has already been processed for this phrase length | |
cursor.execute('''SELECT max_phrase_length FROM processed_books WHERE book = ?''', (title,)) | |
result = cursor.fetchone() | |
if result and result[0] >= max_phrase_length: | |
logging.info(f"Skipping book {title}: Already processed with max_phrase_length {result[0]}") | |
return phrases_to_insert | |
if 'text' not in book_data or not isinstance(book_data['text'], list): | |
logging.warning(f"Skipping book {book_id} due to missing 'text' field.") | |
return phrases_to_insert | |
chapters = book_data['text'] | |
for chapter_id, chapter in enumerate(chapters): | |
for verse_id, verse in enumerate(chapter): | |
verse_text = flatten_text(verse) | |
verse_text = re.sub(r'\[.*?\]', '', verse_text) | |
verse_text = re.sub(r"[^\u05D0-\u05EA ]+", "", verse_text) | |
verse_text = re.sub(r" +", " ", verse_text) | |
words = verse_text.split() | |
for length in range(1, max_phrase_length + 1): | |
for start in range(len(words) - length + 1): | |
phrase_candidate = " ".join(words[start:start + length]) | |
gematria_sum = calculate_gematria(phrase_candidate.replace(" ", "")) | |
word_position_range = f"{total_word_count + start + 1}-{total_word_count + start + length}" | |
phrases_to_insert.append( | |
(gematria_sum, phrase_candidate, None, title, chapter_id + 1, verse_id + 1, length, | |
word_position_range)) | |
total_word_count += len(words) | |
return phrases_to_insert | |
def populate_database(start_book: int, end_book: int, max_phrase_length: int = 1) -> None: | |
"""Populates the database with phrases from the Tanach.""" | |
global conn, book_names, total_word_count | |
logging.info(f"Populating database with books from {start_book} to {end_book}...") | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
for book_id in tqdm(range(start_book, end_book + 1), desc="Processing Books"): | |
phrases_to_insert = process_book(book_id, max_phrase_length, cursor) | |
if phrases_to_insert: | |
cursor.executemany(''' | |
INSERT OR IGNORE INTO results (gematria_sum, words, translation, book, chapter, verse, phrase_length, word_position) | |
VALUES (?, ?, ?, ?, ?, ?, ?, ?) | |
''', phrases_to_insert) | |
# Update processed_books after processing each book | |
cursor.execute(''' | |
INSERT OR REPLACE INTO processed_books (book, max_phrase_length) | |
VALUES (?, ?) | |
''', (book_names[book_id], max_phrase_length)) | |
conn.commit() | |
total_word_count = 0 # Reset for the next set of phrase lengths | |
def get_translation(phrase: str) -> str: | |
"""Retrieves or generates the English translation of a Hebrew phrase | |
and caches it in the database. | |
""" | |
global conn, translator, translation_cache | |
# Check if the translation exists in the database | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT translation FROM results WHERE words = ? LIMIT 1", (phrase,)) | |
result = cursor.fetchone() | |
if result and result[0]: # If a translation exists, use it | |
return result[0] | |
# If no translation in the database, translate and store it | |
translation = translate_and_store(phrase) | |
translation_cache[phrase] = translation | |
# Update the database with the new translation | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute("UPDATE results SET translation = ? WHERE words = ?", (translation, phrase)) | |
conn.commit() | |
return translation | |
def translate_and_store(phrase: str) -> str: | |
"""Translates a Hebrew phrase to English using Google Translate.""" | |
global translator | |
max_retries = 3 | |
retries = 0 | |
while retries < max_retries: | |
try: | |
translation = translator.translate(phrase) | |
return translation | |
except (exceptions.TranslationNotFound, exceptions.NotValidPayload, | |
exceptions.ServerException, exceptions.RequestError) as e: | |
retries += 1 | |
logging.warning(f"Error translating phrase '{phrase}': {e}. Retrying... ({retries}/{max_retries})") | |
logging.error(f"Failed to translate phrase '{phrase}' after {max_retries} retries.") | |
return "[Translation Error]" | |
def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]: | |
"""Searches the database for phrases with a given Gematria value.""" | |
global conn | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
SELECT words, book, chapter, verse, phrase_length, word_position | |
FROM results | |
WHERE gematria_sum = ? AND phrase_length <= ? | |
''', (gematria_sum, max_words)) | |
results = cursor.fetchall() | |
return results | |
def gematria_search_interface(phrases: str, max_words: int, show_translation: bool) -> str: | |
"""The main function for the Gradio interface, handling multiple phrases.""" | |
global conn, book_names, gematria_cache | |
results = [] | |
all_results = [] # Store results for each phrase | |
middle_words_results = [] # Store middle word results for all books | |
all_names_average_position = 0 # Initialize variable for average position across all names and books | |
total_name_count = 0 # Initialize counter for the total number of names processed | |
phrases = phrases.strip().splitlines() | |
if not phrases: | |
return "Please enter at least one phrase." | |
for phrase in phrases: | |
if not phrase.strip(): | |
continue # Skip empty lines | |
numbers = re.findall(r'\d+', phrase) | |
text_without_numbers = re.sub(r'\d+', '', phrase) | |
phrase_gematria = calculate_gematria(text_without_numbers.replace(" ", "")) | |
phrase_gematria += sum(int(number) for number in numbers) | |
if (phrase_gematria, max_words) in gematria_cache: | |
matching_phrases = gematria_cache[(phrase_gematria, max_words)] | |
else: | |
matching_phrases = search_gematria_in_db(phrase_gematria, max_words) | |
gematria_cache[(phrase_gematria, max_words)] = matching_phrases | |
if not matching_phrases: | |
results.append(f"No matching phrases found for: {phrase}") | |
continue | |
sorted_phrases = sorted(matching_phrases, | |
key=lambda x: (int(list(book_names.keys())[list(book_names.values()).index(x[1])]), x[2], | |
x[3])) | |
results_by_book = defaultdict(list) | |
for words, book, chapter, verse, phrase_length, word_position in sorted_phrases: | |
results_by_book[book].append((words, chapter, verse, phrase_length, word_position)) | |
results.append(f"<h2>Results for: {phrase} (Gematria: {phrase_gematria})</h2>") | |
results.append("<div class='results-container'>") | |
for book, phrases in results_by_book.items(): | |
for words, chapter, verse, phrase_length, word_position in phrases: | |
translation = get_translation(words) if show_translation else "" | |
link = f"https://www.biblegateway.com/passage/?search={quote_plus(book)}+{chapter}%3A{verse}&version=CJB" | |
results.append(f""" | |
<div class='result-item'> | |
<p><b>Book:</b> {book}</p> | |
<p><b>Chapter:</b> {chapter}, <b>Verse:</b> {verse}</p> | |
<p class='hebrew-phrase'><b>Hebrew Phrase:</b> {words}</p> | |
<p><b>Translation:</b> {translation}</p> | |
<p><b>Phrase Length:</b> {phrase_length} words</p> | |
<p><b>Phrase Gematria:</b> {phrase_gematria}</p> | |
<p><b>Word Position in the Tanach:</b> {word_position}</p> | |
<a href='{link}' target='_blank' class='bible-link'>[See on Bible Gateway]</a> | |
</div> | |
""") | |
# Calculate average position for the current name across all books | |
name_average_position = calculate_average_position_for_name(results_by_book) | |
if name_average_position is not None: | |
results.append(f"<p><b>Average Word Position for '{phrase}' across all books:</b> {name_average_position:.2f}</p>") | |
all_names_average_position += name_average_position | |
total_name_count += 1 | |
results.append("</div>") | |
all_results.append(results_by_book) # Store results by book without the phrase | |
# Calculate the average word position across all names and all their books | |
if total_name_count > 0: | |
all_names_average_position /= total_name_count | |
results.append(f"<h2>Average Word Position Across All Names and Books: {all_names_average_position:.2f}</h2>") | |
# Calculate middle words for all input lines (common books) | |
if len(all_results) >= 2: | |
results.append("<h2>Middle Words (Common Books):</h2>") | |
results.append("<div class='results-container'>") | |
common_books = set.intersection(*[set(results.keys()) for results in all_results]) | |
logging.debug(f"Common books: {common_books}") | |
for book in common_books: | |
logging.debug(f"Processing book: {book}") | |
# Find nearest positions for all phrases in the current book | |
nearest_positions = find_nearest_positions([results[book] for results in all_results]) | |
logging.debug(f"Nearest positions in {book}: {nearest_positions}") | |
if nearest_positions: | |
middle_word_position = sum(nearest_positions) / len(nearest_positions) | |
logging.debug(f"Calculated middle word position in {book}: {middle_word_position}") | |
start_position = int(middle_word_position) | |
end_position = start_position + 1 if middle_word_position % 1 != 0 else start_position | |
logging.debug(f"Middle word position range in {book}: {start_position}-{end_position}") | |
middle_words_data = get_words_from_db(book, start_position, end_position) | |
logging.debug(f"Middle words data fetched from database: {middle_words_data}") | |
if middle_words_data: | |
# Store middle word data along with book name for sorting | |
middle_words_results.extend([(book, data) for data in middle_words_data]) | |
else: | |
# Handle edge case: fetch words independently for start and end positions | |
logging.debug(f"No middle words found for range {start_position}-{end_position}. " | |
f"Fetching words independently.") | |
middle_words_data_start = get_words_from_db(book, start_position, start_position) | |
middle_words_data_end = get_words_from_db(book, end_position, end_position) | |
if middle_words_data_start or middle_words_data_end: | |
middle_words_results.extend([(book, data) for data in middle_words_data_start + middle_words_data_end]) | |
# Sort middle words results by book order before displaying | |
middle_words_results.sort(key=lambda x: int(list(book_names.keys())[list(book_names.values()).index(x[0])])) | |
for book, (words, chapter, verse, phrase_length, word_position) in middle_words_results: | |
translation = get_translation(words) if show_translation else "" | |
link = f"https://www.biblegateway.com/passage/?search={quote_plus(book)}+{chapter}%3A{verse}&version=CJB" | |
results.append(f""" | |
<div class='result-item'> | |
<p><b>Book:</b> {book}</p> | |
<p><b>Chapter:</b> {chapter}, <b>Verse:</b> {verse}</p> | |
<p class='hebrew-phrase'><b>Hebrew Phrase:</b> {words}</p> | |
<p><b>Translation:</b> {translation}</p> | |
<p><b>Phrase Length:</b> {phrase_length} words</p> | |
<p><b>Word Position in the Tanach:</b> {word_position}</p> | |
<a href='{link}' target='_blank' class='bible-link'>[See on Bible Gateway]</a> | |
</div> | |
""") | |
results.append("</div>") | |
# Style modified to position search on top and results below | |
style = """ | |
<style> | |
.results-container { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); | |
gap: 20px; | |
width: 100%; /* Make results container take full width */ | |
} | |
.result-item { | |
border: 1px solid #ccc; | |
padding: 15px; | |
border-radius: 5px; | |
box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1); | |
} | |
.hebrew-phrase { | |
font-family: 'SBL Hebrew', 'Ezra SIL', serif; | |
direction: rtl; | |
} | |
.bible-link { | |
display: block; | |
margin-top: 10px; | |
color: #007bff; | |
text-decoration: none; | |
} | |
</style> | |
""" | |
return style + "\n".join(results) | |
def calculate_average_position_for_name(results_by_book: Dict[str, List[Tuple]]) -> float: | |
"""Calculates the average word position for a single name across all books.""" | |
positions = [] | |
for book, phrases in results_by_book.items(): | |
for _, _, _, _, word_position in phrases: | |
start, end = map(int, word_position.split('-')) | |
positions.append((start + end) / 2) | |
return sum(positions) / len(positions) if positions else None | |
def find_nearest_positions(results_lists: List[List]) -> List[int]: | |
"""Finds the nearest word positions among multiple lists of results.""" | |
nearest_positions = [] | |
for i in range(len(results_lists)): | |
positions_i = [(int(pos.split('-')[0]) + int(pos.split('-')[1])) / 2 | |
for _, _, _, _, pos in results_lists[i]] # Get average of start and end positions | |
logging.debug(f"Positions for phrase {i+1}: {positions_i}") | |
# Calculate the average position for the current phrase | |
average_position = sum(positions_i) / len(positions_i) if positions_i else None | |
logging.debug(f"Average position for phrase {i+1}: {average_position}") | |
if average_position is not None: | |
nearest_positions.append(average_position) | |
return nearest_positions | |
def get_words_from_db(book: str, start_position: int, end_position: int) -> List[Tuple]: | |
"""Fetches words from the database based on the book and exact word position range.""" | |
global conn | |
logging.debug(f"Fetching words from database for {book} at positions {start_position}-{end_position}") | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute(""" | |
SELECT words, chapter, verse, phrase_length, word_position | |
FROM results | |
WHERE book = ? AND word_position = ? | |
""", (book, f"{start_position}-{end_position}")) # Directly compare word_position | |
results = cursor.fetchall() | |
logging.debug(f"Words fetched from database: {results}") | |
return results | |
def flatten_text(text: List) -> str: | |
"""Flattens nested lists into a single list.""" | |
if isinstance(text, list): | |
return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text) | |
return text | |
def run_app() -> None: | |
"""Initializes and launches the Gradio app.""" | |
global conn | |
initialize_database() | |
initialize_translator() | |
logging.info("Starting database population...") | |
for max_phrase_length in range(1, MAX_PHRASE_LENGTH_LIMIT + 1): | |
populate_database(1, 39, max_phrase_length=max_phrase_length) | |
logging.info("Database population complete.") | |
with gr.Blocks() as iface: # Use gr.Blocks() for layout control | |
with gr.Row(): # Place inputs in a row | |
textbox = gr.Textbox(label="Enter word(s) or numbers (one phrase per line)", lines=5) | |
slider = gr.Slider(label="Max Word Count in Result Phrases", minimum=1, | |
maximum=MAX_PHRASE_LENGTH_LIMIT, step=1, | |
value=1) | |
checkbox = gr.Checkbox(label="Show Translation", value=True) | |
with gr.Row(): # Place buttons in a row | |
clear_button = gr.Button("Clear") | |
submit_button = gr.Button("Submit", variant="primary") | |
html_output = gr.HTML(label="Results") # Output for the results | |
submit_button.click(fn=gematria_search_interface, | |
inputs=[textbox, slider, checkbox], | |
outputs=html_output) | |
clear_button.click(fn=lambda: "", inputs=None, outputs=html_output) # Clear the output | |
iface.launch() | |
if __name__ == "__main__": | |
run_app() | |
[File Ends] app.py.bak | |
[File Begins] bible.py | |
import logging | |
logger = logging.getLogger(__name__) | |
import json | |
import os | |
import re | |
from deep_translator import GoogleTranslator | |
from gematria import calculate_gematria | |
import math | |
# Hebrew gematria values for relevant characters | |
gematria_values = { | |
'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, | |
'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, | |
'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, | |
'ר': 200, 'ש': 300, 'ת': 400 | |
} | |
# Reverse dictionary for converting gematria values back to Hebrew characters | |
reverse_gematria_values = {v: k for k, v in gematria_values.items()} | |
# Function to convert a Hebrew string to its gematria values | |
def string_to_gematria(s): | |
return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary | |
# Function to convert a single gematria value to Hebrew characters | |
def gematria_to_string(value): | |
result = [] | |
for val in sorted(reverse_gematria_values.keys(), reverse=True): | |
while value >= val: | |
result.append(reverse_gematria_values[val]) | |
value -= val | |
return ''.join(result) | |
# Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters | |
def average_gematria(str1, str2): | |
# Convert strings to gematria values | |
gematria1 = string_to_gematria(str1) | |
gematria2 = string_to_gematria(str2) | |
# Handle cases where strings have different lengths by padding with 0s | |
max_len = max(len(gematria1), len(gematria2)) | |
gematria1.extend([0] * (max_len - len(gematria1))) | |
gematria2.extend([0] * (max_len - len(gematria2))) | |
# Calculate the average of corresponding gematria values and apply math.ceil | |
average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] | |
# Convert the average gematria values back to Hebrew characters | |
return ''.join(gematria_to_string(val) for val in average_gematria_values) | |
from deep_translator import GoogleTranslator | |
import os | |
import re | |
import csv | |
def process_json_files(start=1, end=66, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, | |
strip_in_braces=True, strip_diacritics=True, average_compile=False): | |
file_name = "texts/bible/OpenGNT_version3_3.csv" | |
translator = GoogleTranslator(source='auto', target=tlang) | |
results = [] | |
# Dictionary für die 27 Bücher des Neuen Testaments (Englische Namen) | |
nt_books = { | |
40: "Matthew", | |
41: "Mark", | |
42: "Luke", | |
43: "John", | |
44: "Acts", | |
45: "Romans", | |
46: "1. Corinthians", | |
47: "2. Corinthians", | |
48: "Galatians", | |
49: "Ephesians", | |
50: "Philippians", | |
51: "Colossians", | |
52: "1. Thessalonians", | |
53: "2. Thessalonians", | |
54: "1. Timothy", | |
55: "2. Timothy", | |
56: "Titus", | |
57: "Philemon", | |
58: "Hebrews", | |
59: "James", | |
60: "1. Peter", | |
61: "2. Peter", | |
62: "1. John", | |
63: "2. John", | |
64: "3. John", | |
65: "Jude", | |
66: "Revelation" | |
} | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
reader = csv.DictReader(file, delimiter='\t') | |
book_texts = {} | |
current_book = None | |
for row in reader: | |
book = int(row['〔Book|Chapter|Verse〕'].split('|')[0][1:]) | |
if book < start or book > end: | |
continue | |
if current_book != book: | |
current_book = book | |
book_texts[book] = "" | |
greek_text = row['〔OGNTk|OGNTu|OGNTa|lexeme|rmac|sn〕'] | |
greek_text = greek_text.split('〔')[1] | |
greek_text = greek_text.split('|')[0] | |
book_texts[book] += greek_text + " " | |
for book, full_text in book_texts.items(): | |
logger.debug(f"Processing book {book}") | |
clean_text = full_text | |
if strip_in_braces: | |
clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) | |
if strip_diacritics: | |
clean_text = re.sub(r"[^\u0370-\u03FF\u1F00-\u1FFF ]+", "", clean_text) | |
if strip_spaces: | |
clean_text = clean_text.replace(" ", "") | |
else: | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
text_length = len(clean_text) | |
selected_characters_per_round = {} | |
for round_num in map(int, rounds.split(',')): | |
if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): | |
if round_num > 0: | |
current_position = step - 1 | |
else: | |
current_position = text_length - 1 if step == 1 else text_length - step | |
completed_rounds = 0 | |
selected_characters = "" | |
while completed_rounds < abs(round_num): | |
selected_characters += clean_text[current_position % text_length] | |
current_position += step if round_num > 0 else -step | |
if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ | |
(round_num < 0 and current_position < 0): | |
completed_rounds += 1 | |
selected_characters_per_round[round_num] = selected_characters | |
if average_compile and len(selected_characters_per_round) > 1: | |
result_text = "" | |
keys = sorted(selected_characters_per_round.keys()) | |
for i in range(len(keys) - 1): | |
result_text = average_gematria(selected_characters_per_round[keys[i]], selected_characters_per_round[keys[i+1]]) | |
else: | |
result_text = ''.join(selected_characters_per_round.values()) | |
if length != 0: | |
result_text = result_text[:length] | |
translated_text = translator.translate(result_text) if result_text else "" | |
result_sum = calculate_gematria(result_text) | |
if result_text: | |
logger.debug(f"Result for book {book}: {result_text}") | |
result = { | |
'book': f"Bible {book}.", # Use the correct 'book' variable | |
'title': nt_books.get(book, "Unknown Book"), # Get book name from dictionary | |
'result_text': result_text, | |
'result_sum': result_sum, # Make sure result_sum is calculated correctly | |
'translated_text': translated_text | |
} | |
results.append(result) | |
except FileNotFoundError: | |
results.append({"error": f"File {file_name} not found."}) | |
return results | |
# Tests | |
test_results = [ | |
#(process_json_files(1, 1, 21, rounds="3", length=0), ""), | |
#(process_json_files(1, 1, 22, rounds="1", length=0), ""), | |
#(process_json_files(1, 1, 22, rounds="3", length=0), ""), | |
#(process_json_files(1, 1, 23, rounds="3", length=0), ""), | |
#(process_json_files(1, 1, 11, rounds="1", length=0), ""), | |
#(process_json_files(1, 1, 2, rounds="1", length=0), ""), | |
#(process_json_files(1, 1, 23, rounds="1", length=0), None), # Expect None, when no results | |
#(process_json_files(1, 1, 23, rounds="-1", length=0), None), # Expect None, when no results | |
#(process_json_files(1, 1, 22, rounds="-1", length=0), ""), | |
#(process_json_files(1, 1, 22, rounds="-2", length=0), ""), | |
#(process_json_files(1, 1, 1, rounds="-1", length=0), ""), # Reversed Hebrew alphabet | |
#(process_json_files(1, 1, 1, rounds="1,-1", length=0), ""), # Combined rounds | |
#(process_json_files(1, 1, 22, rounds="1,-1", length=0, average_compile=True), ""), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" | |
] | |
all_tests_passed = True | |
for result, expected in test_results: | |
if expected is None: # Check if no result is expected | |
if not result: | |
logger.info(f"Test passed: Expected no results, got no results.") | |
else: | |
logger.error(f"Test failed: Expected no results, but got: {result}") | |
all_tests_passed = False | |
else: | |
# Check if result is not empty before accessing elements | |
if result: | |
#result_text = result[0]['result_text'] | |
result_text = None | |
if result_text == expected: | |
logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") | |
all_tests_passed = False | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got no results") | |
all_tests_passed = False | |
if all_tests_passed: | |
logger.info("All round tests passed.") | |
[File Ends] bible.py | |
[File Begins] database-structure.txt | |
Gematria Sum, Words, Translation, Book, Chapter, Verse, Phrase Length, Phrase Position | |
913 בראשית Genesis 1 1 1 1-1 | |
1116 בראשית ברא Genesis 1 1 2 1-2 | |
1762 בראשית ברא אלהים Genesis 1 1 3 1-3 | |
2163 בראשית ברא אלהים את Genesis 1 1 4 1-4 | |
3118 בראשית ברא אלהים את השמים Genesis 1 1 5 1-5 | |
3525 בראשית ברא אלהים את השמים ואת Genesis 1 1 6 1-6 | |
[File Ends] database-structure.txt | |
[File Begins] gematria.py | |
import unicodedata | |
import logging | |
logger = logging.getLogger(__name__) | |
def strip_diacritics(text): | |
""" | |
Entfernt Diakritika von Unicode-Zeichen, um den Basisbuchstaben zu erhalten, und gibt Warnungen | |
für tatsächlich unbekannte Zeichen aus. | |
""" | |
stripped_text = '' | |
for char in unicodedata.normalize('NFD', text): | |
if unicodedata.category(char) not in ['Mn', 'Cf']: | |
stripped_text += char | |
else: | |
logger.info(f"Info: Diakritisches Zeichen '{char}' wird ignoriert.") | |
return stripped_text | |
def letter_to_value(letter): | |
""" | |
Konvertiert einen einzelnen Buchstaben in seinen Gematria-Wert, ignoriert Leerzeichen | |
und Nicht-Buchstaben-Zeichen. | |
""" | |
# Dein vorhandenes Wörterbuch bleibt unverändert | |
values = { | |
# Lateinische Buchstaben | |
'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9, 'j': 600, | |
'k': 10, 'l': 20, 'm': 30, 'n': 40, 'o': 50, 'p': 60, 'q': 70, 'r': 80, 's': 90, | |
't': 100, 'u': 200, 'v': 700, 'w': 900, 'x': 300, 'y': 400, 'z': 500, | |
'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6, 'G': 7, 'H': 8, 'I': 9, 'J': 600, | |
'K': 10, 'L': 20, 'M': 30, 'N': 40, 'O': 50, 'P': 60, 'Q': 70, 'R': 80, 'S': 90, | |
'T': 100, 'U': 200, 'V': 700, 'W': 900, 'X': 300, 'Y': 400, 'Z': 500, | |
# Basisbuchstaben und einige bereits genannte Varianten | |
'ا': 1, 'أ': 1, 'إ': 1, 'آ': 1, 'ب': 2, 'ج': 3, 'د': 4, 'ه': 5, 'و': 6, 'ز': 7, 'ح': 8, 'ط': 9, | |
'ي': 10, 'ى': 10, 'ك': 20, 'ک': 20, 'ل': 30, 'م': 40, 'ن': 50, 'س': 60, 'ع': 70, 'ف': 80, | |
'ص': 90, 'ق': 100, 'ر': 200, 'ش': 300, 'ت': 400, 'ث': 500, 'خ': 600, 'ذ': 700, 'ض': 800, 'ظ': 900, 'غ': 1000, | |
'ٱ': 1, # Alif Wasla | |
'ـ': 0, # Tatweel | |
# Zusätzliche Varianten und Sonderzeichen | |
'ة': 400, # Taa Marbuta | |
'ؤ': 6, # Waw mit Hamza darüber | |
'ئ': 10, # Ya mit Hamza darüber | |
'ء': 1, # Hamza | |
'ى': 10, # Alif Maqsurah | |
'ٹ': 400, # Taa' marbuta goal | |
'پ': 2, # Pe (Persisch/Urdu) | |
'چ': 3, # Che (Persisch/Urdu) | |
'ژ': 7, # Zhe (Persisch/Urdu) | |
'گ': 20, # Gaf (Persisch/Urdu) | |
'ڭ': 20, # Ngaf (Kazakh, Uyghur, Uzbek, and in some Arabic dialects) | |
'ں': 50, # Noon Ghunna (Persisch/Urdu) | |
'ۀ': 5, # Heh with Yeh above (Persisch/Urdu) | |
'ے': 10, # Barree Yeh (Persisch/Urdu) | |
'؋': 0, # Afghani Sign (wird als Währungssymbol verwendet, nicht für Gematria relevant, aber hier zur Vollständigkeit aufgeführt) | |
# Anmerkung: Das Währungssymbol und ähnliche Zeichen sind in einem Gematria-Kontext normalerweise nicht relevant, | |
# werden aber der Vollständigkeit halber aufgeführt. Es gibt noch viele weitere spezifische Zeichen in erweiterten | |
# arabischen Schriftsystemen (z.B. für andere Sprachen wie Persisch, Urdu, Pashto usw.), die hier nicht vollständig | |
# abgedeckt sind. | |
# Grund- und Schlussformen hebräischer Buchstaben | |
'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, 'י': 10, | |
'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, 'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, | |
'צ': 90, 'ץ': 900, 'ק': 100, 'ר': 200, 'ש': 300, 'ת': 400, | |
# Griechische Buchstaben | |
'α': 1, 'β': 2, 'γ': 3, 'δ': 4, 'ε': 5, 'ϝ': 6, 'ζ': 7, 'η': 8, 'θ': 9, 'ι': 10, | |
'κ': 20, 'λ': 30, 'μ': 40, 'ν': 50, 'ξ': 60, 'ο': 70, 'π': 80, 'ϟ': 90, 'ρ': 100, | |
'σ': 200, 'τ': 300, 'υ': 400, 'φ': 500, 'χ': 600, 'ψ': 700, 'ω': 800, 'ϡ': 900, | |
# Griechische Großbuchstaben | |
'Α': 1, 'Β': 2, 'Γ': 3, 'Δ': 4, 'Ε': 5, 'Ϝ': 6, 'Ζ': 7, 'Η': 8, 'Θ': 9, 'Ι': 10, | |
'Κ': 20, 'Λ': 30, 'Μ': 40, 'Ν': 50, 'Ξ': 60, 'Ο': 70, 'Π': 80, 'Ϟ': 90, 'Ρ': 100, | |
'Σ': 200, 'Τ': 300, 'Υ': 400, 'Φ': 500, 'Χ': 600, 'Ψ': 700, 'Ω': 800, 'Ϡ': 900, | |
'σ': 200, # Sigma | |
'ς': 200, # Final Sigma | |
'ϲ': 200, # Lunate Sigma (Greek) | |
'Ϲ': 200, # Uppercase Lunate Sigma (Greek) | |
# Katapayadi System (Comprehensive with variants) | |
'क': 1, 'ख': 2, 'ग': 3, 'घ': 4, 'ङ': 5, | |
'च': 6, 'छ': 7, 'ज': 8, 'झ': 9, 'ञ': 0, # Or placeholder for zero if appropriate | |
'ट': 1, 'ठ': 2, 'ड': 3, 'ढ': 4, 'ण': 5, | |
'त': 6, 'थ': 7, 'द': 8, 'ध': 9, 'न': 0, # Or placeholder for zero if appropriate | |
'प': 1, 'फ': 2, 'ब': 3, 'भ': 4, 'म': 5, | |
'य': 1, 'र': 2, 'ल': 3, 'व': 4, 'श': 5, 'ष': 6, 'स': 7, 'ह': 8, | |
# Half forms (same values) | |
'क्': 1, 'ख्': 2, 'ग्': 3, 'घ्': 4, 'ङ्': 5, | |
'च्': 6, 'छ्': 7, 'ज्': 8, 'झ्': 9, 'ञ्': 0, | |
'ट्': 1, 'ठ्': 2, 'ड्': 3, 'ढ्': 4, 'ण्': 5, | |
'त्': 6, 'थ्': 7, 'द्': 8, 'ध्': 9, 'न्': 0, | |
'प्': 1, 'फ्': 2, 'ब्': 3, 'भ्': 4, 'म्': 5, | |
'य्': 1, 'र्': 2, 'ल्': 3, 'व्': 4, 'श्': 5, 'ष्': 6, 'स्': 7, 'ह्': 8, | |
# Nukta forms (assuming same values - verify) | |
'क़': 1, 'ख़': 2, 'ग़': 3, 'ज़': 8, 'ड़': 3, 'ढ़': 4, 'फ़': 2, | |
# Kannada, Telugu, Malayalam equivalents | |
'ಕ': 1, 'ಖ': 2, 'ಗ': 3, 'ಘ': 4, 'ಙ': 5, 'ಚ': 6, 'ಛ': 7, 'ಜ': 8, 'ಝ': 9, 'ಞ': 0, | |
'ಟ': 1, 'ಠ': 2, 'ಡ': 3, 'ಢ': 4, 'ಣ': 5, 'ತ': 6, 'ಥ': 7, 'ದ': 8, 'ಧ': 9, 'ನ': 0, | |
'ಪ': 1, 'ಫ': 2, 'ಬ': 3, 'ಭ': 4, 'ಮ': 5, 'ಯ': 1, 'ರ': 2, 'ಲ': 3, 'ವ': 4, 'ಶ': 5, 'ಷ': 6, 'ಸ': 7, 'ಹ': 8, | |
# Malayalam | |
'ക': 1, 'ഖ': 2, 'ഗ': 3, 'ഘ': 4, 'ങ': 5, | |
'ച': 6, 'ഛ': 7, 'ജ': 8, 'ഝ': 9, 'ഞ': 0, | |
'ട': 1, 'ഠ': 2, 'ഡ': 3, 'ഢ': 4, 'ണ': 5, | |
'ത': 6, 'ഥ': 7, 'ദ': 8, 'ധ': 9, 'ന': 0, | |
'പ': 1, 'ഫ': 2, 'ബ': 3, 'ഭ': 4, 'മ': 5, | |
'യ': 1, 'ര': 2, 'ല': 3, 'വ': 4, 'ശ': 5, 'ഷ': 6, 'സ': 7, 'ഹ': 8, | |
# Vokale (Svara) | |
'अ': 0, 'आ': 0, 'इ': 0, 'ई': 0, 'उ': 0, | |
'ऊ': 0, 'ऋ': 0, 'ॠ': 0, 'ऌ': 0, 'ॡ': 0, | |
'ए': 0, 'ऐ': 0, 'ओ': 0, 'औ': 0, | |
# Zusätzliche Zeichen | |
'क्ष': 1, 'त्र': 6, 'ज्ञ': 8, | |
# Anusvaras und Visargas | |
'ं': 0, 'ः': 0, | |
# Halante (Virama) | |
'्': 0, | |
# Ziffern | |
'०': 0, '१': 1, '२': 2, '३': 3, '४': 4, | |
'५': 5, '६': 6, '७': 7, '८': 8, '९': 9, | |
# Sonderzeichen | |
'ॐ': 0, # Om-Symbol | |
# Vokalzeichen (Matra) | |
'ा': 0, 'ि': 0, 'ी': 0, 'ु': 0, 'ू': 0, | |
'ृ': 0, 'ॄ': 0, 'ॢ': 0, 'ॣ': 0, 'े': 0, | |
'ै': 0, 'ो': 0, 'ौ': 0, | |
# Zusätzliche Zeichen für vollständige Abdeckung | |
'ॅ': 0, 'ॆ': 0, 'ॉ': 0, 'ॊ': 0, 'ऍ': 0, | |
'ऎ': 0, 'ऑ': 0, 'ऒ': 0, 'ॎ': 0, 'ॏ': 0, | |
# Vedische Erweiterungen | |
'ᳵ': 0, 'ᳶ': 0, 'ॽ': 0, | |
} | |
# Stelle sicher, dass Diakritika entfernt werden, bevor auf das Wörterbuch zugegriffen wird | |
letter_no_diacritics = strip_diacritics(letter) | |
if letter_no_diacritics in values: | |
return values[letter_no_diacritics.lower()] | |
elif letter.strip() == "": # Ignoriere Leerzeichen und leere Zeilen | |
return 0 | |
else: | |
# Gib eine spezifische Warnung aus, wenn das Zeichen unbekannt ist | |
logger.info(f"Warnung: Unbekanntes Zeichen '{letter}' ignoriert.") | |
return 0 | |
def calculate_gematria(text): | |
"""Calculate the Gematria value of a given Hebrew text, ignoring spaces and non-Hebrew characters.""" | |
return sum(letter_to_value(letter) for letter in text if letter.strip() != "") | |
[File Ends] gematria.py | |
[File Begins] hindu.py | |
import logging | |
logger = logging.getLogger(__name__) | |
import json | |
import os | |
import re | |
from deep_translator import GoogleTranslator | |
from gematria import calculate_gematria | |
import math | |
def process_json_files(start=1, end=10, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, | |
strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): | |
base_path = "texts/rigveda" | |
translator = GoogleTranslator(source='ne', target=tlang) | |
results = [] | |
for i in range(start, end + 1): | |
file_name = f"{base_path}/rigveda_mandala_{i:02}.json" | |
#file_name = f"{base_path}/mahabharata_book_{i:02}.json" | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
# Concatenate all suktas for the current book | |
full_text = "" | |
for sukta in data: | |
full_text += sukta["text"] + " " # Add a space between suktas | |
clean_text = full_text | |
if strip_in_braces: | |
clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) | |
if strip_diacritics: | |
clean_text = re.sub(r'[^\u0900-\u097F\s]', '', clean_text) # Keep only Devanagari and whitespace | |
clean_text = re.sub(r'[\u0951-\u0954\u0964\u0965]+', '', clean_text) # Remove pitch marks, Danda, Double Danda | |
clean_text = re.sub(r'[०१२३४५६७८९]+', '', clean_text) # Remove Devanagari digits | |
clean_text = clean_text.replace(":", "") # Remove colons | |
clean_text = clean_text.replace("?", "") # Remove question marks | |
clean_text = clean_text.replace("!", "") # Remove exclamation marks | |
# Add any other characters to remove here, e.g.: | |
clean_text = clean_text.replace("-", "") | |
clean_text = clean_text.replace("'", "") | |
# ... | |
clean_text = clean_text.replace("\n\n ", " ") | |
clean_text = clean_text.replace("\n", " ") | |
clean_text = re.sub(r'\s+', ' ', clean_text) # Condense multiple spaces | |
if strip_spaces: | |
clean_text = clean_text.replace(" ", "") | |
text_length = len(clean_text) | |
selected_characters_per_round = {} | |
for round_num in map(int, rounds.split(',')): | |
if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): | |
if round_num > 0: | |
current_position = step - 1 | |
else: | |
current_position = text_length - 1 if step == 1 else text_length - step | |
completed_rounds = 0 | |
selected_characters = "" | |
while completed_rounds < abs(round_num): | |
selected_characters += clean_text[current_position % text_length] | |
current_position += step if round_num > 0 else -step | |
if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ | |
(round_num < 0 and current_position < 0): | |
completed_rounds += 1 | |
selected_characters_per_round[round_num] = selected_characters | |
if average_compile and len(selected_characters_per_round) > 1: | |
result_text = "" | |
keys = sorted(selected_characters_per_round.keys()) | |
for j in range(len(keys) - 1): # Changed i to j to avoid conflict with outer loop | |
result_text = average_gematria(selected_characters_per_round[keys[j]], | |
selected_characters_per_round[keys[j + 1]]) | |
else: | |
result_text = ''.join(selected_characters_per_round.values()) | |
if length != 0: | |
result_text = result_text[:length] | |
translated_text = translator.translate(result_text) if result_text and translate else "" | |
if result_text: | |
results.append({ | |
"book": f"Rigveda {i}.", | |
"title": f"Mandala {i}", | |
"result_text": result_text, | |
"result_sum": calculate_gematria(result_text), | |
"translated_text": translated_text | |
}) | |
except (FileNotFoundError, json.JSONDecodeError, KeyError) as e: | |
results.append({"error": f"Error processing {file_name}: {e}"}) | |
return results | |
[File Ends] hindu.py | |
[File Begins] populate_translations.py | |
import sqlite3 | |
import logging | |
from deep_translator import GoogleTranslator, exceptions | |
from tqdm import tqdm | |
import threading | |
import time | |
from queue import Queue | |
# Constants | |
DATABASE_FILE = 'gematria.db' # Use your actual database file name | |
BATCH_SIZE = 1000 | |
NUM_THREADS = 10 # Number of parallel translation threads | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize the translator | |
translator = GoogleTranslator(source='yi', target='en') | |
logging.info("Translator initialized.") | |
# Separate Queue and tqdm | |
translation_queue = Queue() # Regular queue | |
translation_queue_tqdm = tqdm(total=0, dynamic_ncols=True, desc="Translation Queue") # tqdm for the queue | |
total_translations_tqdm = tqdm(total=0, dynamic_ncols=True, desc="Total Translations") # tqdm for overall progress | |
# Lock for database access | |
db_lock = threading.Lock() | |
translations_completed = 0 # Counter for completed translations | |
def translate_and_store(phrase: str) -> str: | |
"""Translates a Hebrew phrase to English using Google Translate.""" | |
global translator | |
max_retries = 3 | |
retries = 0 | |
while retries < max_retries: | |
try: | |
translation = translator.translate(phrase) | |
return translation | |
except (exceptions.TranslationNotFound, exceptions.NotValidPayload, | |
exceptions.ServerException, exceptions.RequestError) as e: | |
retries += 1 | |
logging.warning(f"Error translating phrase '{phrase}': {e}. Retrying... ({retries}/{max_retries})") | |
logging.error(f"Failed to translate phrase '{phrase}' after {max_retries} retries.") | |
return None | |
def translation_worker(): | |
"""Worker thread to process translations from the queue.""" | |
global conn, translator, translation_queue, db_lock, translation_queue_tqdm, translations_completed, total_translations_tqdm | |
while True: | |
phrase = translation_queue.get() # Get from the actual queue | |
translation_queue_tqdm.update() # Update the tqdm progress bar | |
if phrase is None: # Sentinel value to stop the thread | |
break | |
translation = translate_and_store(phrase) | |
# Acquire the lock before any database interaction for this phrase | |
with db_lock: | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
if translation is not None: | |
cursor.execute("UPDATE results SET translation = ? WHERE words = ?", (translation, phrase)) | |
translations_completed += 1 # Increment the global counter | |
total_translations_tqdm.update() # Update the overall progress bar | |
conn.commit() | |
translation_queue.task_done() | |
def populate_translations(): | |
"""Populates translations for all Hebrew phrases in the database.""" | |
global conn, translator, translation_queue, translation_queue_tqdm, total_translations_tqdm | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
# Get the total count of distinct phrases needing translation | |
cursor.execute("SELECT COUNT(DISTINCT words) FROM results WHERE translation IS NULL") | |
total_phrases = cursor.fetchone()[0] | |
logging.info(f"Found {total_phrases} distinct phrases to translate.") | |
# Get distinct Hebrew phrases that need translation using a generator | |
cursor.execute("SELECT DISTINCT words FROM results WHERE translation IS NULL") | |
phrases_generator = (phrase for phrase, in cursor) # Use a generator for tqdm | |
# Set the total for both tqdm progress bars | |
translation_queue_tqdm.total = total_phrases | |
total_translations_tqdm.total = total_phrases | |
# Build the translation queue first | |
for phrase in phrases_generator: | |
translation_queue.put(phrase) # Put into the actual queue | |
translation_queue_tqdm.update() # Update tqdm progress bar | |
# Close the translation queue tqdm after it's fully populated | |
translation_queue_tqdm.close() | |
# Start worker threads AFTER the queue is built | |
threads = [] | |
for _ in range(NUM_THREADS): | |
thread = threading.Thread(target=translation_worker) | |
thread.start() | |
threads.append(thread) | |
# Wait for all tasks to be completed | |
translation_queue.join() | |
# Stop worker threads | |
for _ in range(NUM_THREADS): | |
translation_queue.put(None) # Sentinel value to stop threads | |
for thread in threads: | |
thread.join() | |
logging.info("All translations completed.") | |
def save_translations_periodically(): | |
"""Saves translations to the database every minute.""" | |
while True: | |
time.sleep(60) # Wait for 1 minute | |
logging.info("Saving translations to the database...") | |
with db_lock: # Acquire the lock before saving | |
with sqlite3.connect(DATABASE_FILE) as conn: | |
conn.commit() | |
logging.info("Translations saved.") | |
if __name__ == "__main__": | |
# Start the translation process in a separate thread | |
translation_thread = threading.Thread(target=populate_translations) | |
translation_thread.start() | |
# Start the periodic saving thread | |
save_thread = threading.Thread(target=save_translations_periodically) | |
save_thread.start() | |
# Keep the main thread alive | |
while True: | |
time.sleep(1) | |
[File Ends] populate_translations.py | |
[File Begins] quran.py | |
import logging | |
logger = logging.getLogger(__name__) | |
import json | |
import os | |
import re | |
from deep_translator import GoogleTranslator | |
from gematria import calculate_gematria | |
import math | |
# Hebrew gematria values for relevant characters | |
gematria_values = { | |
'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, | |
'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, | |
'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, | |
'ר': 200, 'ש': 300, 'ת': 400 | |
} | |
# Reverse dictionary for converting gematria values back to Hebrew characters | |
reverse_gematria_values = {v: k for k, v in gematria_values.items()} | |
# Function to convert a Hebrew string to its gematria values | |
def string_to_gematria(s): | |
return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary | |
# Function to convert a single gematria value to Hebrew characters | |
def gematria_to_string(value): | |
result = [] | |
for val in sorted(reverse_gematria_values.keys(), reverse=True): | |
while value >= val: | |
result.append(reverse_gematria_values[val]) | |
value -= val | |
return ''.join(result) | |
# Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters | |
def average_gematria(str1, str2): | |
# Convert strings to gematria values | |
gematria1 = string_to_gematria(str1) | |
gematria2 = string_to_gematria(str2) | |
# Handle cases where strings have different lengths by padding with 0s | |
max_len = max(len(gematria1), len(gematria2)) | |
gematria1.extend([0] * (max_len - len(gematria1))) | |
gematria2.extend([0] * (max_len - len(gematria2))) | |
# Calculate the average of corresponding gematria values and apply math.ceil | |
average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] | |
# Convert the average gematria values back to Hebrew characters | |
return ''.join(gematria_to_string(val) for val in average_gematria_values) | |
def process_json_files(start=1, end=114, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, | |
strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): | |
base_path = "texts/quran" | |
translator = GoogleTranslator(source='ar', target=tlang) | |
results = [] | |
for i in range(start, end + 1): | |
file_name = f"{base_path}/{i:03}.json" # Updated file name formatting | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
# Extract text from verses | |
full_text = "" | |
for verse_key, verse_text in data["verse"].items(): | |
full_text += verse_text + " " | |
full_text = full_text.replace("\ufeff", "") | |
clean_text = full_text | |
if strip_in_braces: | |
clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) | |
if strip_diacritics: | |
clean_text = re.sub( | |
r"[\u0610-\u061A\u064B-\u065F\u0670\u06D6-\u06DC\u06DF-\u06E4\u06E7\u06E8\u06EA-\u06ED]+", "", | |
clean_text) | |
if strip_spaces: | |
clean_text = clean_text.replace(" ", "") | |
else: | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
text_length = len(clean_text) | |
selected_characters_per_round = {} | |
for round_num in map(int, rounds.split(',')): | |
# Handle cases where no characters should be selected | |
if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): | |
# Corrected logic for negative rounds and step = 1 | |
if round_num > 0: | |
current_position = step - 1 | |
else: | |
current_position = text_length - 1 if step == 1 else text_length - step | |
completed_rounds = 0 | |
selected_characters = "" | |
while completed_rounds < abs(round_num): | |
selected_characters += clean_text[current_position % text_length] | |
# Update current_position based on the sign of rounds | |
current_position += step if round_num > 0 else -step | |
if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ | |
(round_num < 0 and current_position < 0): | |
completed_rounds += 1 | |
selected_characters_per_round[round_num] = selected_characters | |
if average_compile and len(selected_characters_per_round) > 1: | |
result_text = "" | |
keys = sorted(selected_characters_per_round.keys()) | |
for i in range(len(keys) - 1): | |
result_text = average_gematria(selected_characters_per_round[keys[i]], | |
selected_characters_per_round[keys[i + 1]]) | |
else: | |
result_text = ''.join(selected_characters_per_round.values()) | |
if length != 0: | |
result_text = result_text[:length] | |
translated_text = translator.translate(result_text) if result_text and translate else "" | |
if result_text: # Only append if result_text is not empty | |
results.append({ | |
"book": f"Quran {i}.", | |
"title": data["name"], # Use "name" instead of "title" | |
"result_text": result_text, | |
"result_sum": calculate_gematria(result_text), | |
"translated_text": translated_text | |
}) | |
except FileNotFoundError: | |
results.append({"error": f"File {file_name} not found."}) | |
except json.JSONDecodeError as e: | |
results.append({"error": f"File {file_name} could not be read as JSON: {e}"}) | |
except KeyError as e: | |
results.append({"error": f"Expected key 'verse' is missing in {file_name}: {e}"}) # Updated key | |
return results | |
# Tests | |
test_results = [ | |
#(process_json_files(0, 0, 21, rounds="3", length=0), "שרק"), | |
#(process_json_files(0, 0, 22, rounds="1", length=0), "ת"), | |
#(process_json_files(0, 0, 22, rounds="3", length=0), "תתת"), | |
#(process_json_files(0, 0, 23, rounds="3", length=0), "אבג"), | |
#(process_json_files(0, 0, 11, rounds="1", length=0), "כת"), | |
#(process_json_files(0, 0, 2, rounds="1", length=0), "בדוחילנעצרת"), | |
#(process_json_files(0, 0, 23, rounds="1", length=0), None), # Expect None, when no results | |
#(process_json_files(0, 0, 23, rounds="-1", length=0), None), # Expect None, when no results | |
#(process_json_files(0, 0, 22, rounds="-1", length=0), "א"), | |
#(process_json_files(0, 0, 22, rounds="-2", length=0), "אא"), | |
#(process_json_files(0, 0, 1, rounds="-1", length=0), "תשרקצפעסנמלכיטחזוהדגבא"), # Reversed Hebrew alphabet | |
#(process_json_files(0, 0, 1, rounds="1,-1", length=0), "אבגדהוזחטיכלמנסעפצקרשתתשרקצפעסנמלכיטחזוהדגבא"), # Combined rounds | |
#(process_json_files(0, 0, 22, rounds="1,-1", length=0, average_compile=True), "רא"), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" | |
] | |
all_tests_passed = True | |
for result, expected in test_results: | |
if expected is None: # Check if no result is expected | |
if not result: | |
logger.info(f"Test passed: Expected no results, got no results.") | |
else: | |
logger.error(f"Test failed: Expected no results, but got: {result}") | |
all_tests_passed = False | |
else: | |
# Check if result is not empty before accessing elements | |
if result: | |
#result_text = result[0]['result_text'] | |
result_text = None | |
if result_text == expected: | |
logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") | |
all_tests_passed = False | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got no results") | |
all_tests_passed = False | |
if all_tests_passed: | |
logger.info("All round tests passed.") | |
[File Ends] quran.py | |
[File Begins] requirements-all.txt | |
aiofiles==23.2.1 | |
annotated-types==0.7.0 | |
anyio==4.6.2.post1 | |
beautifulsoup4==4.12.3 | |
certifi==2024.8.30 | |
charset-normalizer==3.4.0 | |
click==8.1.7 | |
deep-translator==1.11.4 | |
exceptiongroup==1.2.2 | |
fastapi==0.115.4 | |
ffmpy==0.4.0 | |
filelock==3.16.1 | |
fsspec==2024.10.0 | |
fuzzywuzzy==0.18.0 | |
gradio==5.5.0 | |
gradio_calendar==0.0.6 | |
gradio_client==1.4.2 | |
h11==0.14.0 | |
httpcore==1.0.6 | |
httpx==0.27.2 | |
huggingface-hub==0.26.2 | |
idna==3.10 | |
inflect==7.4.0 | |
Jinja2==3.1.4 | |
Levenshtein==0.26.1 | |
markdown-it-py==3.0.0 | |
MarkupSafe==2.1.5 | |
mdurl==0.1.2 | |
more-itertools==10.5.0 | |
numpy==2.1.3 | |
orjson==3.10.11 | |
packaging==24.2 | |
pandas==2.2.3 | |
pillow==11.0.0 | |
pydantic==2.9.2 | |
pydantic_core==2.23.4 | |
pydub==0.25.1 | |
Pygments==2.18.0 | |
python-dateutil==2.9.0.post0 | |
python-Levenshtein==0.26.1 | |
python-multipart==0.0.12 | |
pytz==2024.2 | |
PyYAML==6.0.2 | |
RapidFuzz==3.10.1 | |
requests==2.32.3 | |
rich==13.9.4 | |
ruff==0.7.3 | |
safehttpx==0.1.1 | |
semantic-version==2.10.0 | |
shellingham==1.5.4 | |
six==1.16.0 | |
sniffio==1.3.1 | |
soupsieve==2.6 | |
starlette==0.41.2 | |
tabulate==0.9.0 | |
tomlkit==0.12.0 | |
tqdm==4.67.0 | |
transliterate==1.10.2 | |
typeguard==4.4.1 | |
typer==0.13.0 | |
typing_extensions==4.12.2 | |
tzdata==2024.2 | |
urllib3==2.2.3 | |
uvicorn==0.32.0 | |
websockets==12.0 | |
[File Ends] requirements-all.txt | |
[File Begins] requirements.txt | |
gradio==5.5.0 | |
deep_translator==1.11.4 | |
tabulate==0.9.0 | |
gradio_calendar==0.0.6 | |
inflect==7.4.0 | |
fuzzywuzzy==0.18.0 | |
python-Levenshtein==0.26.1 | |
transliterate==1.10.2 | |
[File Ends] requirements.txt | |
[File Begins] torah.py | |
import logging | |
logger = logging.getLogger(__name__) | |
import json | |
import os | |
import re | |
from deep_translator import GoogleTranslator | |
from gematria import calculate_gematria | |
import math | |
# Hebrew gematria values for relevant characters | |
gematria_values = { | |
'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, | |
'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, | |
'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, | |
'ר': 200, 'ש': 300, 'ת': 400 | |
} | |
# Reverse dictionary for converting gematria values back to Hebrew characters | |
reverse_gematria_values = {v: k for k, v in gematria_values.items()} | |
# Function to convert a Hebrew string to its gematria values | |
def string_to_gematria(s): | |
return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary | |
# Function to convert a single gematria value to Hebrew characters | |
def gematria_to_string(value): | |
result = [] | |
for val in sorted(reverse_gematria_values.keys(), reverse=True): | |
while value >= val: | |
result.append(reverse_gematria_values[val]) | |
value -= val | |
return ''.join(result) | |
# Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters | |
def average_gematria(str1, str2): | |
# Convert strings to gematria values | |
gematria1 = string_to_gematria(str1) | |
gematria2 = string_to_gematria(str2) | |
# Handle cases where strings have different lengths by padding with 0s | |
max_len = max(len(gematria1), len(gematria2)) | |
gematria1.extend([0] * (max_len - len(gematria1))) | |
gematria2.extend([0] * (max_len - len(gematria2))) | |
# Calculate the average of corresponding gematria values and apply math.ceil | |
average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] | |
# Convert the average gematria values back to Hebrew characters | |
return ''.join(gematria_to_string(val) for val in average_gematria_values) | |
def process_json_files(start, end, step, rounds="1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False): | |
base_path = "texts/torah" | |
translator = GoogleTranslator(source='auto', target=tlang) | |
results = [] | |
for i in range(start, end + 1): | |
file_name = f"{base_path}/{i:02}.json" | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
text_blocks = data["text"] | |
full_text = "" | |
for block in text_blocks: | |
full_text += ' '.join(block) | |
clean_text = full_text | |
if strip_in_braces: | |
clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) | |
if strip_diacritics: | |
clean_text = re.sub(r"[^\u05D0-\u05EA ]+", "", clean_text) | |
if strip_spaces: | |
clean_text = clean_text.replace(" ", "") | |
else: | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
clean_text = clean_text.replace(" ", " ") | |
text_length = len(clean_text) | |
selected_characters_per_round = {} | |
for round_num in map(int, rounds.split(',')): | |
# Handle cases where no characters should be selected | |
if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): | |
# Corrected logic for negative rounds and step = 1 | |
if round_num > 0: | |
current_position = step - 1 | |
else: | |
current_position = text_length - 1 if step == 1 else text_length - step | |
completed_rounds = 0 | |
selected_characters = "" | |
while completed_rounds < abs(round_num): | |
selected_characters += clean_text[current_position % text_length] | |
# Update current_position based on the sign of rounds | |
current_position += step if round_num > 0 else -step | |
if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ | |
(round_num < 0 and current_position < 0): | |
completed_rounds += 1 | |
selected_characters_per_round[round_num] = selected_characters | |
if average_compile and len(selected_characters_per_round) > 1: | |
result_text = "" | |
keys = sorted(selected_characters_per_round.keys()) | |
for i in range(len(keys) - 1): | |
result_text = average_gematria(selected_characters_per_round[keys[i]], selected_characters_per_round[keys[i+1]]) | |
else: | |
result_text = ''.join(selected_characters_per_round.values()) | |
if length != 0: | |
result_text = result_text[:length] | |
translated_text = translator.translate(result_text) if result_text else "" | |
if result_text: # Only append if result_text is not empty | |
results.append({ | |
"book": f"Torah {i}.", | |
"title": data["title"], | |
"result_text": result_text, | |
"result_sum": calculate_gematria(result_text), | |
"translated_text": translated_text | |
}) | |
except FileNotFoundError: | |
results.append({"error": f"File {file_name} not found."}) | |
except json.JSONDecodeError as e: | |
results.append({"error": f"File {file_name} could not be read as JSON: {e}"}) | |
except KeyError as e: | |
results.append({"error": f"Expected key 'text' is missing in {file_name}: {e}"}) | |
return results | |
# Tests | |
test_results = [ | |
#(process_json_files(0, 0, 21, rounds="3", length=0), "שרק"), | |
#(process_json_files(0, 0, 22, rounds="1", length=0), "ת"), | |
#(process_json_files(0, 0, 22, rounds="3", length=0), "תתת"), | |
#(process_json_files(0, 0, 23, rounds="3", length=0), "אבג"), | |
#(process_json_files(0, 0, 11, rounds="1", length=0), "כת"), | |
#(process_json_files(0, 0, 2, rounds="1", length=0), "בדוחילנעצרת"), | |
#(process_json_files(0, 0, 23, rounds="1", length=0), None), # Expect None, when no results | |
#(process_json_files(0, 0, 23, rounds="-1", length=0), None), # Expect None, when no results | |
#(process_json_files(0, 0, 22, rounds="-1", length=0), "א"), | |
#(process_json_files(0, 0, 22, rounds="-2", length=0), "אא"), | |
#(process_json_files(0, 0, 1, rounds="-1", length=0), "תשרקצפעסנמלכיטחזוהדגבא"), # Reversed Hebrew alphabet | |
#(process_json_files(0, 0, 1, rounds="1,-1", length=0), "אבגדהוזחטיכלמנסעפצקרשתתשרקצפעסנמלכיטחזוהדגבא"), # Combined rounds | |
#(process_json_files(0, 0, 22, rounds="1,-1", length=0, average_compile=True), "רא"), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" | |
] | |
all_tests_passed = True | |
for result, expected in test_results: | |
if expected is None: # Check if no result is expected | |
if not result: | |
logger.info(f"Test passed: Expected no results, got no results.") | |
else: | |
logger.error(f"Test failed: Expected no results, but got: {result}") | |
all_tests_passed = False | |
else: | |
# Check if result is not empty before accessing elements | |
if result: | |
result_text = result[0]['result_text'] | |
if result_text == expected: | |
logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") | |
all_tests_passed = False | |
else: | |
logger.error(f"Test failed: Expected '{expected}', but got no results") | |
all_tests_passed = False | |
if all_tests_passed: | |
logger.info("All round tests passed.") | |
[File Ends] torah.py | |
[File Begins] translation_utils.py | |
# translation_utils.py | |
import logging | |
import sqlite3 | |
from concurrent.futures import ThreadPoolExecutor | |
import functools | |
from deep_translator import GoogleTranslator, exceptions | |
# Constants | |
TRANSLATION_DATABASE_FILE = 'translation_database.db' | |
SUPPORTED_LANGUAGES = {"af", "sq", "am", "ar", "hy", "az", "eu", "be", "bn", "bs", "bg", "ca", "ceb", "ny", "zh-CN", "zh-TW", "co", "hr", "cs", "da", "nl", "en", "eo", "et", "tl", "fi", "fr", "fy", "gl", "ka", "de", "el", "gu", "ht", "ha", "haw", "iw", "hi", "hmn", "hu", "is", "ig", "id", "ga", "it", "ja", "jw", "kn", "kk", "km", "ko", "ku", "ky", "lo", "la", "lv", "lt", "lb", "mk", "mg", "ms", "ml", "mt", "mi", "mr", "mn", "my", "ne", "no", "ps", "fa", "pl", "pt", "pa", "ro", "ru", "sm", "gd", "sr", "st", "sn", "sd", "si", "sk", "sl", "so", "es", "su", "sw", "sv", "tg", "ta", "te", "th", "tr", "uk", "ur", "uz", "vi", "cy", "xh", "yi", "yo", "zu"} | |
# Initialize logger | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
def create_translation_table(): | |
"""Creates the translation table if it doesn't exist.""" | |
try: | |
with sqlite3.connect(TRANSLATION_DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS translations ( | |
phrase TEXT PRIMARY KEY | |
) | |
''') | |
# Dynamically add language columns | |
cursor.execute("PRAGMA table_info(translations)") | |
existing_columns = {col[1] for col in cursor.fetchall()} | |
for lang_code in SUPPORTED_LANGUAGES: | |
column_name = lang_code.replace('-', '_') | |
if column_name == "is": # Handle reserved keywords in SQLite | |
column_name = "is_" | |
if column_name not in existing_columns: | |
try: | |
cursor.execute(f"ALTER TABLE translations ADD COLUMN `{column_name}` TEXT") | |
logger.info(f"Added column '{column_name}' to translations table.") | |
except sqlite3.OperationalError as e: | |
if "duplicate column name" in str(e).lower(): | |
logger.debug(f"Column '{column_name}' already exists. Skipping.") | |
else: | |
logger.error(f"Error adding column '{column_name}': {e}") # More specific error | |
conn.commit() | |
except Exception as e: # Broad exception handling to catch any other potential issues | |
logger.error(f"An unexpected error occurred in create_translation_table: {e}") | |
@functools.lru_cache(maxsize=1000) # Use the correct decorator name | |
def translate_cached(text, target_language, source_language="auto"): # Renamed to avoid conflicts | |
"""Translates text using Google Translate with caching.""" | |
if not text: | |
return "" | |
try: | |
translator = GoogleTranslator(source=source_language, target=target_language) | |
translated = translator.translate(text) | |
return translated | |
except exceptions.TranslationNotFound: | |
logger.error(f"Translation not found for: {text}") | |
except Exception as e: # Catch generic exceptions | |
logger.exception(f"Translation error: {e}") # Log with traceback | |
return None | |
def get_translation(phrase, target_language, source_language="auto"): | |
"""Retrieves a translation from the database or translates and stores it.""" | |
if target_language not in SUPPORTED_LANGUAGES: | |
logger.error(f"Unsupported target language: {target_language}") | |
return None, False # Return None and False for failure | |
try: | |
with sqlite3.connect(TRANSLATION_DATABASE_FILE) as conn: | |
cursor = conn.cursor() | |
column_name = target_language.replace('-', '_') | |
if column_name == "is": | |
column_name = "is_" | |
cursor.execute(f"SELECT `{column_name}` FROM translations WHERE phrase=?", (phrase,)) | |
result = cursor.fetchone() | |
if result and result[0]: # Check that the result is not empty and has a translated value | |
return result[0], True | |
translated_text = translate_cached(phrase, target_language, source_language) | |
if translated_text: | |
cursor.execute(f""" | |
INSERT INTO translations (phrase, `{column_name}`) VALUES (?, ?) | |
ON CONFLICT(phrase) DO UPDATE SET `{column_name}`=excluded.`{column_name}` | |
""", (phrase, translated_text)) | |
conn.commit() | |
return translated_text, True | |
else: | |
return None, False # Explicitly return False when translation fails | |
except sqlite3.Error as e: | |
logger.error(f"Database error: {e}") | |
return None, False # Return explicit failure indicator | |
except Exception as e: | |
logger.exception(f"Unexpected error in get_translation: {e}") # Generic Exception Catch-All | |
return None, False # Return explicit failure indicator | |
def batch_translate(phrases, target_language, source_language="auto"): | |
"""Translates multiple phrases concurrently.""" | |
phrases_to_translate = [phrase for phrase in phrases if phrase] | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(get_translation, phrase, target_language, source_language) | |
for phrase in phrases_to_translate] | |
results = [future.result() for future in futures] | |
translations = {phrase: translation for phrase, (translation, _) in zip(phrases_to_translate, results)} | |
for phrase in phrases: | |
if not phrase: | |
translations[phrase] = None | |
return translations | |
[File Ends] translation_utils.py | |
[File Begins] tripitaka.py | |
# TODO: Auto-tune by step / 2 , 4, 8, 16, 32, 64, so that the translation result has spaces | |
import logging | |
logger = logging.getLogger(__name__) | |
import json | |
import os | |
import re | |
from deep_translator import GoogleTranslator | |
from gematria import calculate_gematria | |
import math | |
import glob | |
import math | |
def process_json_files(start=1, end=52, step=1, rounds="1,-1", length=0, tlang="en", strip_spaces=True, | |
strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): | |
base_path = "texts/tripitaka" | |
translator = GoogleTranslator(source='ne', target=tlang) # Assuming Nepali for tripitaka as well | |
results = [] | |
for i in range(start, end + 1): | |
file_pattern = f"{base_path}/{i:02}*.json" # Using glob for flexible file names | |
for file_name in glob.glob(file_pattern): | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
full_text = "" | |
for gatha in data.get("gathas", []): # Accessing 'gathas' safely | |
full_text += gatha + " " | |
clean_text = full_text | |
if strip_in_braces: | |
clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) | |
if strip_diacritics: | |
clean_text = re.sub(r'[^\u0900-\u097F\s]', '', clean_text) | |
clean_text = re.sub(r'[\u0951-\u0954\u0964\u0965]+', '', clean_text) | |
clean_text = re.sub(r'[०१२३४५६७८९]+', '', clean_text) | |
clean_text = clean_text.replace(":", "") | |
clean_text = clean_text.replace("?", "") | |
clean_text = clean_text.replace("!", "") | |
clean_text = clean_text.replace("-", "") | |
clean_text = clean_text.replace("'", "") | |
clean_text = clean_text.replace("\n\n ", " ") | |
clean_text = clean_text.replace("\n", " ") | |
clean_text = re.sub(r'\s+', ' ', clean_text) | |
if strip_spaces: | |
clean_text = clean_text.replace(" ", "") | |
text_length = len(clean_text) | |
#step=math.ceil(step/64) | |
selected_characters_per_round = {} | |
for round_num in map(int, rounds.split(',')): | |
if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): | |
if round_num > 0: | |
current_position = step - 1 | |
else: | |
current_position = text_length - 1 if step == 1 else text_length - step | |
completed_rounds = 0 | |
selected_characters = "" | |
while completed_rounds < abs(round_num): | |
selected_characters += clean_text[current_position % text_length] | |
current_position += step if round_num > 0 else -step | |
if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ | |
(round_num < 0 and current_position < text_length * completed_rounds -1): # corrected condition here | |
completed_rounds += 1 | |
selected_characters_per_round[round_num] = selected_characters | |
if average_compile and len(selected_characters_per_round) > 1: | |
result_text = "" | |
keys = sorted(selected_characters_per_round.keys()) | |
for j in range(len(keys) - 1): # Changed i to j to avoid conflict with outer loop | |
result_text = average_gematria(selected_characters_per_round[keys[j]], | |
selected_characters_per_round[keys[j + 1]]) | |
else: | |
result_text = ''.join(selected_characters_per_round.values()) | |
if length != 0: | |
result_text = result_text[:length] | |
translated_text = translator.translate(result_text) if result_text and translate else "" | |
if result_text: | |
results.append({ | |
"book": f"Tripitaka {i}.", | |
"title": f'{data.get("title")} {data.get("book_name")} {data.get("chapter")}', | |
"result_text": result_text, | |
"result_sum": calculate_gematria(result_text), | |
"translated_text": translated_text | |
}) | |
except (FileNotFoundError, json.JSONDecodeError, KeyError) as e: | |
results.append({"error": f"Error processing {file_name}: {e}"}) | |
return results | |
[File Ends] tripitaka.py | |
[File Begins] util.py | |
import json | |
import re | |
def process_json_files(start, end): | |
""" | |
Processes JSON files containing Tanach text and returns a dictionary | |
mapping book IDs to their data. | |
Args: | |
start: The starting book ID (inclusive). | |
end: The ending book ID (inclusive). | |
Returns: | |
A dictionary where keys are book IDs and values are dictionaries | |
containing 'title' and 'text' fields. | |
""" | |
base_path = "texts" | |
results = {} # Use a dictionary to store results | |
for i in range(start, end + 1): | |
file_name = f"{base_path}/{i:02}.json" | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
data = json.load(file) | |
if data: | |
# Store book ID as key and book data as value | |
results[i] = {"title": data.get("title", "No title"), "text": data.get("text", [])} | |
except FileNotFoundError: | |
logging.warning(f"File {file_name} not found.") | |
except json.JSONDecodeError as e: | |
logging.warning(f"File {file_name} could not be read as JSON: {e}") | |
except KeyError as e: | |
logging.warning(f"Expected key 'text' is missing in {file_name}: {e}") | |
return results | |
[File Ends] util.py | |
[File Begins] utils.py | |
import logging | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
import inflect | |
from datetime import datetime, date | |
from deep_translator import GoogleTranslator | |
# Custom function to convert number to ordinal words | |
def number_to_ordinal_word(number): | |
ordinal_dict = { | |
1: "first", 2: "second", 3: "third", 4: "fourth", 5: "fifth", | |
6: "sixth", 7: "seventh", 8: "eighth", 9: "ninth", 10: "tenth", | |
11: "eleventh", 12: "twelfth", 13: "thirteenth", 14: "fourteenth", | |
15: "fifteenth", 16: "sixteenth", 17: "seventeenth", 18: "eighteenth", | |
19: "nineteenth", 20: "twentieth", 21: "twentyfirst", 22: "twentysecond", | |
23: "twentythird", 24: "twentyfourth", 25: "twentyfifth", | |
26: "twentysixth", 27: "twentyseventh", 28: "twentyeighth", | |
29: "twentyninth", 30: "thirtieth", 31: "thirtyfirst" | |
} | |
return ordinal_dict.get(number, "") | |
def custom_normalize(text): | |
mappings = { | |
'ü': 'ue', 'ö': 'oe', 'ä': 'ae', 'ß': 'ss', 'Ü': 'Ue', 'Ö': 'Oe', 'Ä': 'Ae', | |
'á': 'a', 'à': 'a', 'â': 'a', 'ã': 'a', 'å': 'aa', 'ā': 'a', 'ă': 'a', 'ą': 'a', | |
'Á': 'A', 'À': 'A', 'Â': 'A', 'Ã': 'A', 'Å': 'Aa', 'Ā': 'A', 'Ă': 'A', 'Ą': 'A', | |
'é': 'e', 'è': 'e', 'ê': 'e', 'ë': 'e', 'ē': 'e', 'ĕ': 'e', 'ė': 'e', 'ę': 'e', 'ě': 'e', | |
'É': 'E', 'È': 'E', 'Ê': 'E', 'Ë': 'E', 'Ē': 'E', 'Ĕ': 'E', 'Ė': 'E', 'Ę': 'E', 'Ě': 'E', | |
'í': 'i', 'ì': 'i', 'î': 'i', 'ï': 'i', 'ī': 'i', 'ĭ': 'i', 'į': 'i', 'ı': 'i', | |
'Í': 'I', 'Ì': 'I', 'Î': 'I', 'Ï': 'I', 'Ī': 'I', 'Ĭ': 'I', 'Į': 'I', 'I': 'I', | |
'ó': 'o', 'ò': 'o', 'ô': 'o', 'õ': 'o', 'ø': 'oe', 'ō': 'o', 'ŏ': 'o', 'ő': 'o', | |
'Ó': 'O', 'Ò': 'O', 'Ô': 'O', 'Õ': 'O', 'Ø': 'Oe', 'Ō': 'O', 'Ŏ': 'O', 'Ő': 'O', | |
'ú': 'u', 'ù': 'u', 'û': 'u', 'ū': 'u', 'ŭ': 'u', 'ů': 'u', 'ű': 'u', 'ų': 'u', | |
'Ú': 'U', 'Ù': 'U', 'Û': 'U', 'Ü': 'Ue', 'Ū': 'U', 'Ŭ': 'U', 'Ů': 'U', 'Ű': 'U', 'Ų': 'U', | |
'ç': 'c', 'ć': 'c', 'ĉ': 'c', 'ċ': 'c', 'č': 'c', | |
'Ç': 'C', 'Ć': 'C', 'Ĉ': 'C', 'Ċ': 'C', 'Č': 'C', | |
'ñ': 'n', 'ń': 'n', 'ņ': 'n', 'ň': 'n', 'ŋ': 'n', | |
'Ñ': 'N', 'Ń': 'N', 'Ņ': 'N', 'Ň': 'N', 'Ŋ': 'N', | |
'ý': 'y', 'ÿ': 'y', 'ŷ': 'y', | |
'Ý': 'Y', 'Ÿ': 'Y', 'Ŷ': 'Y', | |
'ž': 'zh', 'ź': 'z', 'ż': 'z', | |
'Ž': 'Zh', 'Ź': 'Z', 'Ż': 'Z', | |
'ð': 'd', 'Ð': 'D', 'þ': 'th', 'Þ': 'Th', 'ł': 'l', 'Ł': 'L', 'đ': 'd', 'Đ': 'D', | |
'æ': 'ae', 'Æ': 'Ae', 'œ': 'oe', 'Œ': 'Oe', | |
'ś': 's', 'ŝ': 's', 'ş': 's', 'š': 's', | |
'Ś': 'S', 'Ŝ': 'S', 'Ş': 'S', 'Š': 'S', | |
'ť': 't', 'ţ': 't', 'ŧ': 't', 'Ť': 'T', 'Ţ': 'T', 'Ŧ': 'T', | |
'ŕ': 'r', 'ř': 'r', 'Ŕ': 'R', 'Ř': 'R', | |
'ľ': 'l', 'ĺ': 'l', 'ļ': 'l', 'ŀ': 'l', | |
'Ľ': 'L', 'Ĺ': 'L', 'Ļ': 'L', 'Ŀ': 'L', | |
'ē': 'e', 'Ē': 'E', | |
'ň': 'n', 'Ň': 'N', | |
'ğ': 'g', 'Ğ': 'G', | |
'ġ': 'g', 'Ġ': 'G', | |
'ħ': 'h', 'Ħ': 'H', | |
'ı': 'i', 'İ': 'I', | |
'ĵ': 'j', 'Ĵ': 'J', | |
'ķ': 'k', 'Ķ': 'K', | |
'ļ': 'l', 'Ļ': 'L', | |
'ņ': 'n', 'Ņ': 'N', | |
'ŧ': 't', 'Ŧ': 'T', | |
'ŭ': 'u', 'Ŭ': 'U' | |
} | |
for key, value in mappings.items(): | |
text = text.replace(key, value) | |
return text | |
# Convert a date to words with an ordinal day | |
def date_to_words(date_obj): | |
inf_engine = inflect.engine() | |
if isinstance(date_obj, (date, datetime)): | |
year = date_obj.year | |
month = date_obj.strftime("%B") if hasattr(date_obj, 'month') else None | |
day_ordinal = number_to_ordinal_word(date_obj.day) if hasattr(date_obj, 'day') else None | |
elif isinstance(date_obj, str): | |
try: | |
# Attempt to parse full date first | |
date_obj = datetime.strptime(date_obj, "%Y-%m-%d") | |
year = date_obj.year | |
month = date_obj.strftime("%B") | |
day_ordinal = number_to_ordinal_word(date_obj.day) | |
except ValueError: | |
try: | |
# Try year-month | |
date_obj = datetime.strptime(date_obj, "%Y-%m") | |
year = date_obj.year | |
month = date_obj.strftime("%B") | |
day_ordinal = None | |
except ValueError: | |
try: | |
# Try just year | |
date_obj = datetime.strptime(date_obj, "%Y") | |
year = date_obj.year | |
month = None | |
day_ordinal = None | |
except ValueError: | |
raise ValueError("Invalid date format. Use YYYY-MM-DD, YYYY-MM, or YYYY.") | |
else: | |
raise TypeError("date_obj must be a datetime, date, or string object.") | |
if 1900 <= year <= 1999: | |
year_words = f"{inf_engine.number_to_words(year // 100, andword='')} hundred" | |
if year % 100 != 0: | |
year_words += f" {inf_engine.number_to_words(year % 100, andword='')}" | |
else: | |
year_words = inf_engine.number_to_words(year, andword='') | |
year_formatted = year_words.replace(',', '') | |
parts = [] | |
if day_ordinal: | |
parts.append(day_ordinal) | |
if month: | |
parts.append(month) | |
parts.append(year_formatted) | |
return " ".join(parts) | |
def translate_date_to_words(date, lang='en'): | |
"""Converts a date to words in the specified language.""" | |
if date is None: | |
return "No date selected" | |
date_string = date.strftime("%Y-%m-%d") | |
logger.info(f"Date string: {date_string}") | |
date_in_words = date_to_words(date_string) | |
logger.info(f"Date in words: {date_in_words}") | |
translator = GoogleTranslator(source='auto', target=lang) | |
translated_date_words = translator.translate(date_in_words) | |
logger.info(f"Translated date words: {translated_date_words}") | |
# Normalize the text if it contains any special characters | |
translated_date_words = custom_normalize(translated_date_words) | |
logger.info(f"Normalized date words: {translated_date_words}") | |
return translated_date_words | |
[File Ends] utils.py | |
<-- File Content Ends | |
Instruction: Okay Echo, now you know the code. Please give me a function overview of the code, with headers and subheaders, in Markdown format. And in the following conversation, you stick to that main function overview, so long as it is feasible. | |