Repository Documentation This document provides a comprehensive overview of the repository's structure and contents. The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format. In this section, directories and files are listed using tree branches to indicate their structure and relationships. Following the tree representation, the 'File Content' section details the contents of each file in the repository. Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path, and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker. This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository. Directory/File Tree Begins --> / ├── README.md ├── app.py ├── app.py.bak ├── bible.py ├── database-structure.txt ├── gematria.py ├── hindu.py ├── populate_translations.py ├── quran.py ├── requirements-all.txt ├── requirements.txt ├── texts │ ├── bible │ ├── mahabharata │ ├── quran │ ├── rigveda │ ├── torah │ └── tripitaka ├── torah.py ├── translation_utils.py ├── tripitaka.py ├── util.py └── utils.py <-- Directory/File Tree Ends File Content Begin --> [File Begins] README.md --- title: Book of Souls - Search your name+day (journal) oracle with ELS over Torah, Bible, Quran, Rigveda, Tripitaka emoji: 📊 colorFrom: green colorTo: pink sdk: gradio sdk_version: 4.39.0 app_file: app.py pinned: false --- This application searches for equidistant letter sequences (ELS) in the Torah, Bible, Quran, and Rigveda. It also integrates a network search functionality to find related phrases based on gematria. **Inputs:** * **Target Language for Translation:** The language to translate the results into. * **Date to investigate (optional):** A date to include in the gematria calculation. * **Language of the person/topic (optional) (Date Word Language):** The language to use for converting the date to words. * **Name and/or Topic (required):** The text to calculate the gematria for. * **Jump Width (Steps) (optional) for ELS:** The step size for the ELS search. * **Round (1) / Round (2) (optional):** The number of rounds for the ELS search (positive or negative). * **Include Torah / Include Bible / Include Quran / Include Rigveda:** Checkboxes to select which texts to search. * **Strip Spaces from Books / Strip Text in Braces from Books / Strip Diacritics from Books:** Options for text preprocessing. **Outputs:** * **ELS Results:** A dataframe containing the ELS search results. * **Most Frequent Phrase in Network Search:** The most frequent phrase found in the network search. * **JSON Output:** A JSON representation of the search results. **How to Use:** 1. Enter the name or topic you want to investigate. 2. Optionally, select a date and the language for its representation. 3. Set the jump width (steps) and rounds for the ELS search. 4. Choose which texts to include in the search. 5. Configure text preprocessing options as needed. 6. Click "Search with ELS". 7. The results will be displayed in the output sections. You can copy the JSON output using the provided button. **Network Search:** The network search functionality uses the calculated gematria of the ELS results to search a database for phrases with the same gematria. It displays the most frequent matching phrase. If no exact match is found, it attempts to find the closest match based on similarity and word count difference. [File Ends] README.md [File Begins] app.py #TODO: Quran results have numbers import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) import gradio as gr import torah import bible import quran import hindu import tripitaka from utils import number_to_ordinal_word, custom_normalize, date_to_words, translate_date_to_words from gematria import calculate_gematria, strip_diacritics import pandas as pd from deep_translator import GoogleTranslator from gradio_calendar import Calendar from datetime import datetime, timedelta import math import json import re import sqlite3 from collections import defaultdict from typing import List, Tuple import rich from fuzzywuzzy import fuzz import calendar import translation_utils import hashlib translation_utils.create_translation_table() # Create a translator instance *once* globally translator = GoogleTranslator(source='auto', target='auto') LANGUAGES_SUPPORTED = translator.get_supported_languages(as_dict=True) # Corrected dictionary name LANGUAGE_CODE_MAP = LANGUAGES_SUPPORTED # Use deep_translator's mapping directly # --- Constants --- DATABASE_FILE = 'gematria.db' MAX_PHRASE_LENGTH_LIMIT = 20 ELS_CACHE_DB = "els_cache.db" DATABASE_TIMEOUT = 60 # --- Database Initialization --- def initialize_database(): global conn conn = sqlite3.connect(DATABASE_FILE) cursor = conn.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS results ( gematria_sum INTEGER, words TEXT, translation TEXT, book TEXT, chapter INTEGER, verse INTEGER, phrase_length INTEGER, word_position TEXT, PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position) ) ''') cursor.execute(''' CREATE INDEX IF NOT EXISTS idx_results_gematria ON results (gematria_sum) ''') cursor.execute(''' CREATE TABLE IF NOT EXISTS processed_books ( book TEXT PRIMARY KEY, max_phrase_length INTEGER ) ''') conn.commit() # --- Initialize Database --- initialize_database() # --- ELS Cache Functions --- def create_els_cache_table(): with sqlite3.connect(ELS_CACHE_DB) as conn: conn.execute(''' CREATE TABLE IF NOT EXISTS els_cache ( query_hash TEXT PRIMARY KEY, results TEXT ) ''') def get_query_hash(func, *args, **kwargs): key = (func.__name__, args, tuple(sorted(kwargs.items()))) return hashlib.sha256(json.dumps(key).encode()).hexdigest() def cached_process_json_files(func, *args, **kwargs): query_hash = get_query_hash(func, *args, **kwargs) try: with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn: cursor = conn.cursor() cursor.execute("SELECT results FROM els_cache WHERE query_hash = ?", (query_hash,)) result = cursor.fetchone() if result: logger.info(f"Cache hit for query: {query_hash}") return json.loads(result[0]) except sqlite3.Error as e: logger.error(f"Database error checking cache: {e}") logger.info(f"Cache miss for query: {query_hash}") results = func(*args, **kwargs) try: with sqlite3.connect(ELS_CACHE_DB, timeout=DATABASE_TIMEOUT) as conn: cursor = conn.cursor() cursor.execute("INSERT INTO els_cache (query_hash, results) VALUES (?, ?)", (query_hash, json.dumps(results))) conn.commit() except sqlite3.Error as e: logger.error(f"Database error caching results: {e}") return results # --- Helper Functions (from Network app.py) --- def flatten_text(text: List) -> str: if isinstance(text, list): return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text) return text def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]: global conn with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute(''' SELECT words, book, chapter, verse, phrase_length, word_position FROM results WHERE gematria_sum = ? AND phrase_length <= ? ''', (gematria_sum, max_words)) results = cursor.fetchall() return results def get_most_frequent_phrase(results): phrase_counts = defaultdict(int) for words, book, chapter, verse, phrase_length, word_position in results: phrase_counts[words] += 1 most_frequent_phrase = max(phrase_counts, key=phrase_counts.get) if phrase_counts else None # Handle empty results return most_frequent_phrase # --- Functions from BOS app.py --- def create_language_dropdown(label, default_value='English', show_label=True): # Default value must be in LANGUAGE_CODE_MAP return gr.Dropdown( choices=list(LANGUAGE_CODE_MAP.keys()), # Correct choices label=label, value=default_value, show_label=show_label ) def calculate_gematria_sum(text, date_words): if text or date_words: combined_input = f"{text} {date_words}" logger.info(f"searching for input: {combined_input}") numbers = re.findall(r'\d+', combined_input) text_without_numbers = re.sub(r'\d+', '', combined_input) number_sum = sum(int(number) for number in numbers) text_gematria = calculate_gematria(strip_diacritics(text_without_numbers)) total_sum = text_gematria + number_sum return total_sum else: return None def perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka): if step == 0 or rounds_combination == "0,0": return None results = {} length = 0 selected_language_long = tlang # From the Gradio dropdown (long form) tlang = LANGUAGES_SUPPORTED.get(selected_language_long) #Get the short code. if tlang is None: # Handle unsupported languages tlang = "en" logger.warning(f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).") if include_torah: logger.debug(f"Arguments for Torah: {(1, 39, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk)}") results["Torah"] = cached_process_json_files(torah.process_json_files, 1, 39, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) else: results["Torah"] = [] if include_bible: results["Bible"] = cached_process_json_files(bible.process_json_files, 40, 66, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) else: results["Bible"] = [] if include_quran: results["Quran"] = cached_process_json_files(quran.process_json_files, 1, 114, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) else: results["Quran"] = [] if include_hindu: results["Rig Veda"] = cached_process_json_files(hindu.process_json_files, 1, 10, step, rounds_combination, length, tlang, False, strip_in_braces, strip_diacritics_chk) else: results["Rig Veda"] = [] if include_tripitaka: results["Tripitaka"] = cached_process_json_files(tripitaka.process_json_files, 1, 52, step, rounds_combination, length, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk) else: results["Tripitaka"] = [] return results def add_24h_projection(results_dict): #Now takes a dictionary of results for book_name, results in results_dict.items(): # Iterate per book num_results = len(results) if num_results > 0: time_interval = timedelta(minutes=24 * 60 / num_results) current_time = datetime.min.time() for i in range(num_results): next_time = (datetime.combine(datetime.min, current_time) + time_interval).time() time_range_str = f"{current_time.strftime('%H:%M')}-{next_time.strftime('%H:%M')}" results[i]['24h Projection'] = time_range_str current_time = next_time return results_dict def add_monthly_projection(results_dict, selected_date): if selected_date is None: return results_dict # Return if no date is selected for book_name, results in results_dict.items(): # Iterate per book num_results = len(results) if num_results > 0: days_in_month = calendar.monthrange(selected_date.year, selected_date.month)[1] total_seconds = (days_in_month - 1) * 24 * 3600 seconds_interval = total_seconds / num_results start_datetime = datetime(selected_date.year, selected_date.month, 1) current_datetime = start_datetime for i in range(num_results): next_datetime = current_datetime + timedelta(seconds=seconds_interval) current_date = current_datetime.date() # Moved assignment inside loop next_date = next_datetime.date() date_range_str = f"{current_date.strftime('%h %d')} - {next_date.strftime('%h %d')}" results[i]['Monthly Projection'] = date_range_str current_datetime = next_datetime # Add this current_date = next_datetime.date() # Add this too return results_dict def add_yearly_projection(results_dict, selected_date): #Correct name, handle dictionary input if selected_date is None: return results_dict # Return if no date is selected for book_name, results in results_dict.items(): # Iterate per book num_results = len(results) if num_results > 0: days_in_year = 366 if calendar.isleap(selected_date.year) else 365 total_seconds = (days_in_year - 1) * 24 * 3600 seconds_interval = total_seconds / num_results start_datetime = datetime(selected_date.year, 1, 1) current_datetime = start_datetime for i in range(num_results): next_datetime = current_datetime + timedelta(seconds=seconds_interval) current_date = current_datetime.date() # Move assignment inside loop next_date = next_datetime.date() date_range_str = f"{current_date.strftime('%b %d')} - {next_date.strftime('%b %d')}" results[i]['Yearly Projection'] = date_range_str current_datetime = next_datetime # Update current datetime for next iteration return results_dict def sort_results(results): def parse_time(time_str): try: hours, minutes = map(int, time_str.split(':')) return hours * 60 + minutes # Convert to total minutes except ValueError: return 24 * 60 # Sort invalid times to the end return sorted(results, key=lambda x: ( parse_time(x.get('24h Projection', '23:59').split('-')[0]), # Sort by start time first parse_time(x.get('24h Projection', '23:59').split('-')[1]) # Then by end time )) # --- Main Gradio App --- with gr.Blocks() as app: with gr.Column(): with gr.Row(): tlang = create_language_dropdown("Target Language for Result Translation", default_value='english') selected_date = Calendar(type="datetime", label="Date to investigate (optional)", info="Pick a date from the calendar") use_day = gr.Checkbox(label="Use Day", info="Check to include day in search", value=True) use_month = gr.Checkbox(label="Use Month", info="Check to include month in search", value=True) use_year = gr.Checkbox(label="Use Year", info="Check to include year in search", value=True) date_language_input = create_language_dropdown("Language of the person/topic (optional) (Date Word Language)", default_value='english') with gr.Row(): gematria_text = gr.Textbox(label="Name and/or Topic (required)", value="Hans Albert Einstein Mileva Marity-Einstein") date_words_output = gr.Textbox(label="Date in Words Translated (optional)") gematria_result = gr.Number(label="Journal Sum") #with gr.Row(): with gr.Row(): step = gr.Number(label="Jump Width (Steps) for ELS") float_step = gr.Number(visible=False, value=1) half_step_btn = gr.Button("Steps / 2") double_step_btn = gr.Button("Steps * 2") with gr.Column(): round_x = gr.Number(label="Round (1)", value=1) round_y = gr.Number(label="Round (2)", value=-1) rounds_combination = gr.Textbox(label="Combined Rounds", value="1,-1") with gr.Row(): include_torah_chk = gr.Checkbox(label="Include Torah", value=True) include_bible_chk = gr.Checkbox(label="Include Bible", value=True) include_quran_chk = gr.Checkbox(label="Include Quran", value=True) include_hindu_chk = gr.Checkbox(label="Include Rigveda", value=True) include_tripitaka_chk = gr.Checkbox(label="Include Tripitaka", value=True) merge_results_chk = gr.Checkbox(label="Merge Results (Torah-Bible-Quran)", value=True) strip_spaces = gr.Checkbox(label="Strip Spaces from Books", value=True) strip_in_braces = gr.Checkbox(label="Strip Text in Braces from Books", value=True) strip_diacritics_chk = gr.Checkbox(label="Strip Diacritics from Books", value=True) translate_btn = gr.Button("Search with ELS") # --- Output Components --- markdown_output = gr.Dataframe(label="ELS Results") most_frequent_phrase_output = gr.Textbox(label="Most Frequent Phrase in Network Search") json_output = gr.Textbox(label="JSON Output") copy_json_button = gr.Button("Copy JSON to Clipboard") # --- Hidden HTML component to hold the JavaScript function --- html_js = gr.HTML( """ """, visible=False # Hide the HTML component ) # --- Event Handlers --- def update_date_words(selected_date, date_language_input, use_day, use_month, use_year): if selected_date is None: return "" if not use_year and not use_month and not use_day: return translate_date_to_words(selected_date, date_language_input) year = selected_date.year if use_year else None month = selected_date.month if use_month else None day = selected_date.day if use_day else None if year is not None and month is not None and day is not None: date_obj = selected_date elif year is not None and month is not None: date_obj = str(f"{year}-{month}") elif year is not None: date_obj = str(f"{year}") else: # Return empty string if no date components are selected return "" date_in_words = date_to_words(date_obj) translator = GoogleTranslator(source='auto', target=date_language_input) translated_date_words = translator.translate(date_in_words) return custom_normalize(translated_date_words) def update_journal_sum(gematria_text, date_words_output): sum_value = calculate_gematria_sum(gematria_text, date_words_output) return sum_value, sum_value, sum_value def update_rounds_combination(round_x, round_y): return f"{int(round_x)},{int(round_y)}" def update_step_half(float_step): new_step = math.ceil(float_step / 2) return new_step, float_step / 2 def update_step_double(float_step): new_step = math.ceil(float_step * 2) return new_step, float_step * 2 def find_closest_phrase(target_phrase, phrases): best_match = None best_score = 0 logging.debug(f"Target phrase for similarity search: {target_phrase}") # Log target phrase for phrase, _, _, _, _, _ in phrases: word_length_diff = abs(len(target_phrase.split()) - len(phrase.split())) similarity_score = fuzz.ratio(target_phrase, phrase) combined_score = similarity_score - word_length_diff logging.debug(f"Comparing with phrase: {phrase}") # Log each phrase being compared logging.debug( f"Word Length Difference: {word_length_diff}, Similarity Score: {similarity_score}, Combined Score: {combined_score}") # Log scores if combined_score > best_score: best_score = combined_score best_match = phrase logging.debug(f"Closest phrase found: {best_match} with score: {best_score}") # Log the best match return best_match def perform_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka, gematria_text, date_words_output, selected_date): # Inside perform_search els_results = perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah, include_bible, include_quran, include_hindu, include_tripitaka) # --- Network Search Integration --- most_frequent_phrases = {} combined_and_sorted_results = [] # Combined list to hold all results for book_name, book_results in els_results.items(): if book_results: # Add this check to ensure book_results is not empty most_frequent_phrases[book_name] = "" # Default value for result in book_results: try: gematria_sum = calculate_gematria(result['result_text']) # Calculate gematria max_words = len(result['result_text'].split()) matching_phrases = search_gematria_in_db(gematria_sum, max_words) max_words_limit = 20 while not matching_phrases and max_words < max_words_limit: # Increase max_words for more results max_words += 1 matching_phrases = search_gematria_in_db(gematria_sum, max_words) if matching_phrases: most_frequent_phrase = get_most_frequent_phrase(matching_phrases) most_frequent_phrases[book_name] = most_frequent_phrase else: closest_phrase = find_closest_phrase(result['result_text'], search_gematria_in_db(gematria_sum, max_words_limit)) most_frequent_phrases[ book_name] = closest_phrase or "" # Update most frequent phrases even if no phrase found result['Most Frequent Phrase'] = most_frequent_phrases[book_name] if 'book' in result: if isinstance(result['book'], int): # Torah, Bible, Quran case result['book'] = f"{book_name} {result['book']}." combined_and_sorted_results.append(result) except KeyError as e: print(f"DEBUG: KeyError - Key '{e.args[0]}' not found in result. Skipping this result.") continue # --- Batch Translation --- selected_language_long = tlang # From the Gradio dropdown (long form) tlang_short = LANGUAGES_SUPPORTED.get(selected_language_long) #Get the short code. if tlang_short is None: # Handle unsupported languages tlang_short = "en" logger.warning(f"Unsupported language selected: {selected_language_long}. Defaulting to English (en).") phrases_to_translate = [result.get('Most Frequent Phrase', '') for result in combined_and_sorted_results] translated_phrases = translation_utils.batch_translate(phrases_to_translate, tlang_short) # Use short code here result_texts_to_translate = [result.get('result_text', '') for result in combined_and_sorted_results] translated_result_texts = translation_utils.batch_translate(result_texts_to_translate, tlang_short) # And here for i, result in enumerate(combined_and_sorted_results): result['translated_text'] = translated_result_texts.get(result_texts_to_translate[i], None) # Store translated_text result['Translated Most Frequent Phrase'] = translated_phrases.get(phrases_to_translate[i], None) # Use get to handle missing keys # Time Projections (using els_results dictionary) updated_els_results = add_24h_projection(els_results) # Use original els_results dictionary updated_els_results = add_monthly_projection(updated_els_results, selected_date) #Call correct functions with correct params updated_els_results = add_yearly_projection(updated_els_results, selected_date) combined_and_sorted_results = [] for book_results in updated_els_results.values(): #Combine results for dataframe and json combined_and_sorted_results.extend(book_results) combined_and_sorted_results = sort_results(combined_and_sorted_results) #sort combined results df = pd.DataFrame(combined_and_sorted_results) df.index = range(1, len(df) + 1) df.reset_index(inplace=True) df.rename(columns={'index': 'Result Number'}, inplace=True) for i, result in enumerate(combined_and_sorted_results): # Iterate through the combined list result['Result Number'] = i + 1 search_config = { "step": step, "rounds_combination": rounds_combination, "target_language": tlang, "strip_spaces": strip_spaces, "strip_in_braces": strip_in_braces, "strip_diacritics": strip_diacritics_chk, "include_torah": include_torah, "include_bible": include_bible, "include_quran": include_quran, "include_hindu": include_hindu, "include_tripitaka": include_tripitaka, "gematria_text": gematria_text, "date_words": date_words_output } output_data = { "search_configuration": search_config, "results": combined_and_sorted_results # Use the combined list here } json_data = json.dumps(output_data, ensure_ascii=False, indent=4) # --- Return results --- combined_most_frequent = "\n".join( f"{book}: {phrase}" for book, phrase in most_frequent_phrases.items()) # Combine phrases return df, combined_most_frequent, json_data # --- Event Triggers --- round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination) round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination) selected_date.change(update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output]) date_language_input.change(update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output]) gematria_text.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step]) date_words_output.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step]) half_step_btn.click(update_step_half, inputs=[float_step], outputs=[step, float_step]) double_step_btn.click(update_step_double, inputs=[float_step], outputs=[step, float_step]) translate_btn.click( perform_search, inputs=[step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, include_torah_chk, include_bible_chk, include_quran_chk, include_hindu_chk, include_tripitaka_chk, gematria_text, date_words_output, selected_date], outputs=[markdown_output, most_frequent_phrase_output, json_output] ) app.load( update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], # Include all 5 inputs outputs=[date_words_output] ) copy_json_button.click( js=""" (json_string) => { copyJSON(json_string); // Call the JavaScript function defined in the HTML component }""", inputs=json_output, # Make sure json_output is an input ) use_day.change( update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output] ) use_month.change( update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output] ) use_year.change( update_date_words, inputs=[selected_date, date_language_input, use_day, use_month, use_year], outputs=[date_words_output] ) def checkbox_behavior(use_day_value, use_month_value): if use_day_value: # Tick month and year automatically when day is ticked. return True, True return use_month_value, True # return month value unchanged and automatically tick year if month is checked use_day.change(checkbox_behavior, inputs=[use_day, use_month], outputs=[use_month, use_year]) use_month.change(checkbox_behavior, inputs=[use_day, use_month], outputs=[use_month, use_year]) #No need for use_day here, day won't be changed by month if __name__ == "__main__": app.launch(share=False) [File Ends] app.py [File Begins] app.py.bak import gradio as gr import json import re import sqlite3 import logging from collections import defaultdict from typing import Tuple, Dict, List # Assuming you have these files in your project from util import process_json_files from gematria import calculate_gematria from deep_translator import GoogleTranslator, exceptions from urllib.parse import quote_plus from tqdm import tqdm # Constants DATABASE_FILE = 'gematria.db' MAX_PHRASE_LENGTH_LIMIT = 20 BATCH_SIZE = 10000 # Set up logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # Global variables conn: sqlite3.Connection = None translator: GoogleTranslator = None book_names: Dict[int, str] = {} gematria_cache: Dict[Tuple[int, int], List[Tuple[str, str, int, int, int, str]]] = {} translation_cache: Dict[str, str] = {} total_word_count: int = 0 # Global counter for word position def initialize_database() -> None: """Initializes the SQLite database.""" global conn conn = sqlite3.connect(DATABASE_FILE) cursor = conn.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS results ( gematria_sum INTEGER, words TEXT, translation TEXT, book TEXT, chapter INTEGER, verse INTEGER, phrase_length INTEGER, word_position TEXT, PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position) ) ''') cursor.execute(''' CREATE INDEX IF NOT EXISTS idx_results_gematria ON results (gematria_sum) ''') cursor.execute(''' CREATE TABLE IF NOT EXISTS processed_books ( book TEXT PRIMARY KEY, max_phrase_length INTEGER ) ''') conn.commit() def initialize_translator() -> None: """Initializes the Google Translator.""" global translator translator = GoogleTranslator(source='iw', target='en') logging.info("Translator initialized.") def process_book(book_id: int, max_phrase_length: int, cursor): """Processes a single book and returns phrases to insert.""" global book_names, total_word_count book_data = process_json_files(book_id, book_id) phrases_to_insert = [] if book_id in book_data: book_data = book_data[book_id] if 'title' not in book_data or not isinstance(book_data['title'], str): logging.warning(f"Skipping book {book_id} due to missing 'title' field.") return phrases_to_insert title = book_data['title'] book_names[book_id] = title # Check if this book has already been processed for this phrase length cursor.execute('''SELECT max_phrase_length FROM processed_books WHERE book = ?''', (title,)) result = cursor.fetchone() if result and result[0] >= max_phrase_length: logging.info(f"Skipping book {title}: Already processed with max_phrase_length {result[0]}") return phrases_to_insert if 'text' not in book_data or not isinstance(book_data['text'], list): logging.warning(f"Skipping book {book_id} due to missing 'text' field.") return phrases_to_insert chapters = book_data['text'] for chapter_id, chapter in enumerate(chapters): for verse_id, verse in enumerate(chapter): verse_text = flatten_text(verse) verse_text = re.sub(r'\[.*?\]', '', verse_text) verse_text = re.sub(r"[^\u05D0-\u05EA ]+", "", verse_text) verse_text = re.sub(r" +", " ", verse_text) words = verse_text.split() for length in range(1, max_phrase_length + 1): for start in range(len(words) - length + 1): phrase_candidate = " ".join(words[start:start + length]) gematria_sum = calculate_gematria(phrase_candidate.replace(" ", "")) word_position_range = f"{total_word_count + start + 1}-{total_word_count + start + length}" phrases_to_insert.append( (gematria_sum, phrase_candidate, None, title, chapter_id + 1, verse_id + 1, length, word_position_range)) total_word_count += len(words) return phrases_to_insert def populate_database(start_book: int, end_book: int, max_phrase_length: int = 1) -> None: """Populates the database with phrases from the Tanach.""" global conn, book_names, total_word_count logging.info(f"Populating database with books from {start_book} to {end_book}...") with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() for book_id in tqdm(range(start_book, end_book + 1), desc="Processing Books"): phrases_to_insert = process_book(book_id, max_phrase_length, cursor) if phrases_to_insert: cursor.executemany(''' INSERT OR IGNORE INTO results (gematria_sum, words, translation, book, chapter, verse, phrase_length, word_position) VALUES (?, ?, ?, ?, ?, ?, ?, ?) ''', phrases_to_insert) # Update processed_books after processing each book cursor.execute(''' INSERT OR REPLACE INTO processed_books (book, max_phrase_length) VALUES (?, ?) ''', (book_names[book_id], max_phrase_length)) conn.commit() total_word_count = 0 # Reset for the next set of phrase lengths def get_translation(phrase: str) -> str: """Retrieves or generates the English translation of a Hebrew phrase and caches it in the database. """ global conn, translator, translation_cache # Check if the translation exists in the database with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute("SELECT translation FROM results WHERE words = ? LIMIT 1", (phrase,)) result = cursor.fetchone() if result and result[0]: # If a translation exists, use it return result[0] # If no translation in the database, translate and store it translation = translate_and_store(phrase) translation_cache[phrase] = translation # Update the database with the new translation with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute("UPDATE results SET translation = ? WHERE words = ?", (translation, phrase)) conn.commit() return translation def translate_and_store(phrase: str) -> str: """Translates a Hebrew phrase to English using Google Translate.""" global translator max_retries = 3 retries = 0 while retries < max_retries: try: translation = translator.translate(phrase) return translation except (exceptions.TranslationNotFound, exceptions.NotValidPayload, exceptions.ServerException, exceptions.RequestError) as e: retries += 1 logging.warning(f"Error translating phrase '{phrase}': {e}. Retrying... ({retries}/{max_retries})") logging.error(f"Failed to translate phrase '{phrase}' after {max_retries} retries.") return "[Translation Error]" def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]: """Searches the database for phrases with a given Gematria value.""" global conn with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute(''' SELECT words, book, chapter, verse, phrase_length, word_position FROM results WHERE gematria_sum = ? AND phrase_length <= ? ''', (gematria_sum, max_words)) results = cursor.fetchall() return results def gematria_search_interface(phrases: str, max_words: int, show_translation: bool) -> str: """The main function for the Gradio interface, handling multiple phrases.""" global conn, book_names, gematria_cache results = [] all_results = [] # Store results for each phrase middle_words_results = [] # Store middle word results for all books all_names_average_position = 0 # Initialize variable for average position across all names and books total_name_count = 0 # Initialize counter for the total number of names processed phrases = phrases.strip().splitlines() if not phrases: return "Please enter at least one phrase." for phrase in phrases: if not phrase.strip(): continue # Skip empty lines numbers = re.findall(r'\d+', phrase) text_without_numbers = re.sub(r'\d+', '', phrase) phrase_gematria = calculate_gematria(text_without_numbers.replace(" ", "")) phrase_gematria += sum(int(number) for number in numbers) if (phrase_gematria, max_words) in gematria_cache: matching_phrases = gematria_cache[(phrase_gematria, max_words)] else: matching_phrases = search_gematria_in_db(phrase_gematria, max_words) gematria_cache[(phrase_gematria, max_words)] = matching_phrases if not matching_phrases: results.append(f"No matching phrases found for: {phrase}") continue sorted_phrases = sorted(matching_phrases, key=lambda x: (int(list(book_names.keys())[list(book_names.values()).index(x[1])]), x[2], x[3])) results_by_book = defaultdict(list) for words, book, chapter, verse, phrase_length, word_position in sorted_phrases: results_by_book[book].append((words, chapter, verse, phrase_length, word_position)) results.append(f"

Results for: {phrase} (Gematria: {phrase_gematria})

") results.append("
") for book, phrases in results_by_book.items(): for words, chapter, verse, phrase_length, word_position in phrases: translation = get_translation(words) if show_translation else "" link = f"https://www.biblegateway.com/passage/?search={quote_plus(book)}+{chapter}%3A{verse}&version=CJB" results.append(f"""

Book: {book}

Chapter: {chapter}, Verse: {verse}

Hebrew Phrase: {words}

Translation: {translation}

Phrase Length: {phrase_length} words

Phrase Gematria: {phrase_gematria}

Word Position in the Tanach: {word_position}

[See on Bible Gateway]
""") # Calculate average position for the current name across all books name_average_position = calculate_average_position_for_name(results_by_book) if name_average_position is not None: results.append(f"

Average Word Position for '{phrase}' across all books: {name_average_position:.2f}

") all_names_average_position += name_average_position total_name_count += 1 results.append("
") all_results.append(results_by_book) # Store results by book without the phrase # Calculate the average word position across all names and all their books if total_name_count > 0: all_names_average_position /= total_name_count results.append(f"

Average Word Position Across All Names and Books: {all_names_average_position:.2f}

") # Calculate middle words for all input lines (common books) if len(all_results) >= 2: results.append("

Middle Words (Common Books):

") results.append("
") common_books = set.intersection(*[set(results.keys()) for results in all_results]) logging.debug(f"Common books: {common_books}") for book in common_books: logging.debug(f"Processing book: {book}") # Find nearest positions for all phrases in the current book nearest_positions = find_nearest_positions([results[book] for results in all_results]) logging.debug(f"Nearest positions in {book}: {nearest_positions}") if nearest_positions: middle_word_position = sum(nearest_positions) / len(nearest_positions) logging.debug(f"Calculated middle word position in {book}: {middle_word_position}") start_position = int(middle_word_position) end_position = start_position + 1 if middle_word_position % 1 != 0 else start_position logging.debug(f"Middle word position range in {book}: {start_position}-{end_position}") middle_words_data = get_words_from_db(book, start_position, end_position) logging.debug(f"Middle words data fetched from database: {middle_words_data}") if middle_words_data: # Store middle word data along with book name for sorting middle_words_results.extend([(book, data) for data in middle_words_data]) else: # Handle edge case: fetch words independently for start and end positions logging.debug(f"No middle words found for range {start_position}-{end_position}. " f"Fetching words independently.") middle_words_data_start = get_words_from_db(book, start_position, start_position) middle_words_data_end = get_words_from_db(book, end_position, end_position) if middle_words_data_start or middle_words_data_end: middle_words_results.extend([(book, data) for data in middle_words_data_start + middle_words_data_end]) # Sort middle words results by book order before displaying middle_words_results.sort(key=lambda x: int(list(book_names.keys())[list(book_names.values()).index(x[0])])) for book, (words, chapter, verse, phrase_length, word_position) in middle_words_results: translation = get_translation(words) if show_translation else "" link = f"https://www.biblegateway.com/passage/?search={quote_plus(book)}+{chapter}%3A{verse}&version=CJB" results.append(f"""

Book: {book}

Chapter: {chapter}, Verse: {verse}

Hebrew Phrase: {words}

Translation: {translation}

Phrase Length: {phrase_length} words

Word Position in the Tanach: {word_position}

[See on Bible Gateway]
""") results.append("
") # Style modified to position search on top and results below style = """ """ return style + "\n".join(results) def calculate_average_position_for_name(results_by_book: Dict[str, List[Tuple]]) -> float: """Calculates the average word position for a single name across all books.""" positions = [] for book, phrases in results_by_book.items(): for _, _, _, _, word_position in phrases: start, end = map(int, word_position.split('-')) positions.append((start + end) / 2) return sum(positions) / len(positions) if positions else None def find_nearest_positions(results_lists: List[List]) -> List[int]: """Finds the nearest word positions among multiple lists of results.""" nearest_positions = [] for i in range(len(results_lists)): positions_i = [(int(pos.split('-')[0]) + int(pos.split('-')[1])) / 2 for _, _, _, _, pos in results_lists[i]] # Get average of start and end positions logging.debug(f"Positions for phrase {i+1}: {positions_i}") # Calculate the average position for the current phrase average_position = sum(positions_i) / len(positions_i) if positions_i else None logging.debug(f"Average position for phrase {i+1}: {average_position}") if average_position is not None: nearest_positions.append(average_position) return nearest_positions def get_words_from_db(book: str, start_position: int, end_position: int) -> List[Tuple]: """Fetches words from the database based on the book and exact word position range.""" global conn logging.debug(f"Fetching words from database for {book} at positions {start_position}-{end_position}") with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute(""" SELECT words, chapter, verse, phrase_length, word_position FROM results WHERE book = ? AND word_position = ? """, (book, f"{start_position}-{end_position}")) # Directly compare word_position results = cursor.fetchall() logging.debug(f"Words fetched from database: {results}") return results def flatten_text(text: List) -> str: """Flattens nested lists into a single list.""" if isinstance(text, list): return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text) return text def run_app() -> None: """Initializes and launches the Gradio app.""" global conn initialize_database() initialize_translator() logging.info("Starting database population...") for max_phrase_length in range(1, MAX_PHRASE_LENGTH_LIMIT + 1): populate_database(1, 39, max_phrase_length=max_phrase_length) logging.info("Database population complete.") with gr.Blocks() as iface: # Use gr.Blocks() for layout control with gr.Row(): # Place inputs in a row textbox = gr.Textbox(label="Enter word(s) or numbers (one phrase per line)", lines=5) slider = gr.Slider(label="Max Word Count in Result Phrases", minimum=1, maximum=MAX_PHRASE_LENGTH_LIMIT, step=1, value=1) checkbox = gr.Checkbox(label="Show Translation", value=True) with gr.Row(): # Place buttons in a row clear_button = gr.Button("Clear") submit_button = gr.Button("Submit", variant="primary") html_output = gr.HTML(label="Results") # Output for the results submit_button.click(fn=gematria_search_interface, inputs=[textbox, slider, checkbox], outputs=html_output) clear_button.click(fn=lambda: "", inputs=None, outputs=html_output) # Clear the output iface.launch() if __name__ == "__main__": run_app() [File Ends] app.py.bak [File Begins] bible.py import logging logger = logging.getLogger(__name__) import json import os import re from deep_translator import GoogleTranslator from gematria import calculate_gematria import math # Hebrew gematria values for relevant characters gematria_values = { 'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, 'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, 'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, 'ר': 200, 'ש': 300, 'ת': 400 } # Reverse dictionary for converting gematria values back to Hebrew characters reverse_gematria_values = {v: k for k, v in gematria_values.items()} # Function to convert a Hebrew string to its gematria values def string_to_gematria(s): return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary # Function to convert a single gematria value to Hebrew characters def gematria_to_string(value): result = [] for val in sorted(reverse_gematria_values.keys(), reverse=True): while value >= val: result.append(reverse_gematria_values[val]) value -= val return ''.join(result) # Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters def average_gematria(str1, str2): # Convert strings to gematria values gematria1 = string_to_gematria(str1) gematria2 = string_to_gematria(str2) # Handle cases where strings have different lengths by padding with 0s max_len = max(len(gematria1), len(gematria2)) gematria1.extend([0] * (max_len - len(gematria1))) gematria2.extend([0] * (max_len - len(gematria2))) # Calculate the average of corresponding gematria values and apply math.ceil average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] # Convert the average gematria values back to Hebrew characters return ''.join(gematria_to_string(val) for val in average_gematria_values) from deep_translator import GoogleTranslator import os import re import csv def process_json_files(start=1, end=66, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False): file_name = "texts/bible/OpenGNT_version3_3.csv" translator = GoogleTranslator(source='auto', target=tlang) results = [] # Dictionary für die 27 Bücher des Neuen Testaments (Englische Namen) nt_books = { 40: "Matthew", 41: "Mark", 42: "Luke", 43: "John", 44: "Acts", 45: "Romans", 46: "1. Corinthians", 47: "2. Corinthians", 48: "Galatians", 49: "Ephesians", 50: "Philippians", 51: "Colossians", 52: "1. Thessalonians", 53: "2. Thessalonians", 54: "1. Timothy", 55: "2. Timothy", 56: "Titus", 57: "Philemon", 58: "Hebrews", 59: "James", 60: "1. Peter", 61: "2. Peter", 62: "1. John", 63: "2. John", 64: "3. John", 65: "Jude", 66: "Revelation" } try: with open(file_name, 'r', encoding='utf-8') as file: reader = csv.DictReader(file, delimiter='\t') book_texts = {} current_book = None for row in reader: book = int(row['〔Book|Chapter|Verse〕'].split('|')[0][1:]) if book < start or book > end: continue if current_book != book: current_book = book book_texts[book] = "" greek_text = row['〔OGNTk|OGNTu|OGNTa|lexeme|rmac|sn〕'] greek_text = greek_text.split('〔')[1] greek_text = greek_text.split('|')[0] book_texts[book] += greek_text + " " for book, full_text in book_texts.items(): logger.debug(f"Processing book {book}") clean_text = full_text if strip_in_braces: clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) if strip_diacritics: clean_text = re.sub(r"[^\u0370-\u03FF\u1F00-\u1FFF ]+", "", clean_text) if strip_spaces: clean_text = clean_text.replace(" ", "") else: clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") text_length = len(clean_text) selected_characters_per_round = {} for round_num in map(int, rounds.split(',')): if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): if round_num > 0: current_position = step - 1 else: current_position = text_length - 1 if step == 1 else text_length - step completed_rounds = 0 selected_characters = "" while completed_rounds < abs(round_num): selected_characters += clean_text[current_position % text_length] current_position += step if round_num > 0 else -step if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ (round_num < 0 and current_position < 0): completed_rounds += 1 selected_characters_per_round[round_num] = selected_characters if average_compile and len(selected_characters_per_round) > 1: result_text = "" keys = sorted(selected_characters_per_round.keys()) for i in range(len(keys) - 1): result_text = average_gematria(selected_characters_per_round[keys[i]], selected_characters_per_round[keys[i+1]]) else: result_text = ''.join(selected_characters_per_round.values()) if length != 0: result_text = result_text[:length] translated_text = translator.translate(result_text) if result_text else "" result_sum = calculate_gematria(result_text) if result_text: logger.debug(f"Result for book {book}: {result_text}") result = { 'book': f"Bible {book}.", # Use the correct 'book' variable 'title': nt_books.get(book, "Unknown Book"), # Get book name from dictionary 'result_text': result_text, 'result_sum': result_sum, # Make sure result_sum is calculated correctly 'translated_text': translated_text } results.append(result) except FileNotFoundError: results.append({"error": f"File {file_name} not found."}) return results # Tests test_results = [ #(process_json_files(1, 1, 21, rounds="3", length=0), ""), #(process_json_files(1, 1, 22, rounds="1", length=0), ""), #(process_json_files(1, 1, 22, rounds="3", length=0), ""), #(process_json_files(1, 1, 23, rounds="3", length=0), ""), #(process_json_files(1, 1, 11, rounds="1", length=0), ""), #(process_json_files(1, 1, 2, rounds="1", length=0), ""), #(process_json_files(1, 1, 23, rounds="1", length=0), None), # Expect None, when no results #(process_json_files(1, 1, 23, rounds="-1", length=0), None), # Expect None, when no results #(process_json_files(1, 1, 22, rounds="-1", length=0), ""), #(process_json_files(1, 1, 22, rounds="-2", length=0), ""), #(process_json_files(1, 1, 1, rounds="-1", length=0), ""), # Reversed Hebrew alphabet #(process_json_files(1, 1, 1, rounds="1,-1", length=0), ""), # Combined rounds #(process_json_files(1, 1, 22, rounds="1,-1", length=0, average_compile=True), ""), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" ] all_tests_passed = True for result, expected in test_results: if expected is None: # Check if no result is expected if not result: logger.info(f"Test passed: Expected no results, got no results.") else: logger.error(f"Test failed: Expected no results, but got: {result}") all_tests_passed = False else: # Check if result is not empty before accessing elements if result: #result_text = result[0]['result_text'] result_text = None if result_text == expected: logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") else: logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") all_tests_passed = False else: logger.error(f"Test failed: Expected '{expected}', but got no results") all_tests_passed = False if all_tests_passed: logger.info("All round tests passed.") [File Ends] bible.py [File Begins] database-structure.txt Gematria Sum, Words, Translation, Book, Chapter, Verse, Phrase Length, Phrase Position 913 בראשית Genesis 1 1 1 1-1 1116 בראשית ברא Genesis 1 1 2 1-2 1762 בראשית ברא אלהים Genesis 1 1 3 1-3 2163 בראשית ברא אלהים את Genesis 1 1 4 1-4 3118 בראשית ברא אלהים את השמים Genesis 1 1 5 1-5 3525 בראשית ברא אלהים את השמים ואת Genesis 1 1 6 1-6 [File Ends] database-structure.txt [File Begins] gematria.py import unicodedata import logging logger = logging.getLogger(__name__) def strip_diacritics(text): """ Entfernt Diakritika von Unicode-Zeichen, um den Basisbuchstaben zu erhalten, und gibt Warnungen für tatsächlich unbekannte Zeichen aus. """ stripped_text = '' for char in unicodedata.normalize('NFD', text): if unicodedata.category(char) not in ['Mn', 'Cf']: stripped_text += char else: logger.info(f"Info: Diakritisches Zeichen '{char}' wird ignoriert.") return stripped_text def letter_to_value(letter): """ Konvertiert einen einzelnen Buchstaben in seinen Gematria-Wert, ignoriert Leerzeichen und Nicht-Buchstaben-Zeichen. """ # Dein vorhandenes Wörterbuch bleibt unverändert values = { # Lateinische Buchstaben 'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9, 'j': 600, 'k': 10, 'l': 20, 'm': 30, 'n': 40, 'o': 50, 'p': 60, 'q': 70, 'r': 80, 's': 90, 't': 100, 'u': 200, 'v': 700, 'w': 900, 'x': 300, 'y': 400, 'z': 500, 'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6, 'G': 7, 'H': 8, 'I': 9, 'J': 600, 'K': 10, 'L': 20, 'M': 30, 'N': 40, 'O': 50, 'P': 60, 'Q': 70, 'R': 80, 'S': 90, 'T': 100, 'U': 200, 'V': 700, 'W': 900, 'X': 300, 'Y': 400, 'Z': 500, # Basisbuchstaben und einige bereits genannte Varianten 'ا': 1, 'أ': 1, 'إ': 1, 'آ': 1, 'ب': 2, 'ج': 3, 'د': 4, 'ه': 5, 'و': 6, 'ز': 7, 'ح': 8, 'ط': 9, 'ي': 10, 'ى': 10, 'ك': 20, 'ک': 20, 'ل': 30, 'م': 40, 'ن': 50, 'س': 60, 'ع': 70, 'ف': 80, 'ص': 90, 'ق': 100, 'ر': 200, 'ش': 300, 'ت': 400, 'ث': 500, 'خ': 600, 'ذ': 700, 'ض': 800, 'ظ': 900, 'غ': 1000, 'ٱ': 1, # Alif Wasla 'ـ': 0, # Tatweel # Zusätzliche Varianten und Sonderzeichen 'ة': 400, # Taa Marbuta 'ؤ': 6, # Waw mit Hamza darüber 'ئ': 10, # Ya mit Hamza darüber 'ء': 1, # Hamza 'ى': 10, # Alif Maqsurah 'ٹ': 400, # Taa' marbuta goal 'پ': 2, # Pe (Persisch/Urdu) 'چ': 3, # Che (Persisch/Urdu) 'ژ': 7, # Zhe (Persisch/Urdu) 'گ': 20, # Gaf (Persisch/Urdu) 'ڭ': 20, # Ngaf (Kazakh, Uyghur, Uzbek, and in some Arabic dialects) 'ں': 50, # Noon Ghunna (Persisch/Urdu) 'ۀ': 5, # Heh with Yeh above (Persisch/Urdu) 'ے': 10, # Barree Yeh (Persisch/Urdu) '؋': 0, # Afghani Sign (wird als Währungssymbol verwendet, nicht für Gematria relevant, aber hier zur Vollständigkeit aufgeführt) # Anmerkung: Das Währungssymbol und ähnliche Zeichen sind in einem Gematria-Kontext normalerweise nicht relevant, # werden aber der Vollständigkeit halber aufgeführt. Es gibt noch viele weitere spezifische Zeichen in erweiterten # arabischen Schriftsystemen (z.B. für andere Sprachen wie Persisch, Urdu, Pashto usw.), die hier nicht vollständig # abgedeckt sind. # Grund- und Schlussformen hebräischer Buchstaben 'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, 'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, 'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, 'ר': 200, 'ש': 300, 'ת': 400, # Griechische Buchstaben 'α': 1, 'β': 2, 'γ': 3, 'δ': 4, 'ε': 5, 'ϝ': 6, 'ζ': 7, 'η': 8, 'θ': 9, 'ι': 10, 'κ': 20, 'λ': 30, 'μ': 40, 'ν': 50, 'ξ': 60, 'ο': 70, 'π': 80, 'ϟ': 90, 'ρ': 100, 'σ': 200, 'τ': 300, 'υ': 400, 'φ': 500, 'χ': 600, 'ψ': 700, 'ω': 800, 'ϡ': 900, # Griechische Großbuchstaben 'Α': 1, 'Β': 2, 'Γ': 3, 'Δ': 4, 'Ε': 5, 'Ϝ': 6, 'Ζ': 7, 'Η': 8, 'Θ': 9, 'Ι': 10, 'Κ': 20, 'Λ': 30, 'Μ': 40, 'Ν': 50, 'Ξ': 60, 'Ο': 70, 'Π': 80, 'Ϟ': 90, 'Ρ': 100, 'Σ': 200, 'Τ': 300, 'Υ': 400, 'Φ': 500, 'Χ': 600, 'Ψ': 700, 'Ω': 800, 'Ϡ': 900, 'σ': 200, # Sigma 'ς': 200, # Final Sigma 'ϲ': 200, # Lunate Sigma (Greek) 'Ϲ': 200, # Uppercase Lunate Sigma (Greek) # Katapayadi System (Comprehensive with variants) 'क': 1, 'ख': 2, 'ग': 3, 'घ': 4, 'ङ': 5, 'च': 6, 'छ': 7, 'ज': 8, 'झ': 9, 'ञ': 0, # Or placeholder for zero if appropriate 'ट': 1, 'ठ': 2, 'ड': 3, 'ढ': 4, 'ण': 5, 'त': 6, 'थ': 7, 'द': 8, 'ध': 9, 'न': 0, # Or placeholder for zero if appropriate 'प': 1, 'फ': 2, 'ब': 3, 'भ': 4, 'म': 5, 'य': 1, 'र': 2, 'ल': 3, 'व': 4, 'श': 5, 'ष': 6, 'स': 7, 'ह': 8, # Half forms (same values) 'क्': 1, 'ख्': 2, 'ग्': 3, 'घ्': 4, 'ङ्': 5, 'च्': 6, 'छ्': 7, 'ज्': 8, 'झ्': 9, 'ञ्': 0, 'ट्': 1, 'ठ्': 2, 'ड्': 3, 'ढ्': 4, 'ण्': 5, 'त्': 6, 'थ्': 7, 'द्': 8, 'ध्': 9, 'न्': 0, 'प्': 1, 'फ्': 2, 'ब्': 3, 'भ्': 4, 'म्': 5, 'य्': 1, 'र्': 2, 'ल्': 3, 'व्': 4, 'श्': 5, 'ष्': 6, 'स्': 7, 'ह्': 8, # Nukta forms (assuming same values - verify) 'क़': 1, 'ख़': 2, 'ग़': 3, 'ज़': 8, 'ड़': 3, 'ढ़': 4, 'फ़': 2, # Kannada, Telugu, Malayalam equivalents 'ಕ': 1, 'ಖ': 2, 'ಗ': 3, 'ಘ': 4, 'ಙ': 5, 'ಚ': 6, 'ಛ': 7, 'ಜ': 8, 'ಝ': 9, 'ಞ': 0, 'ಟ': 1, 'ಠ': 2, 'ಡ': 3, 'ಢ': 4, 'ಣ': 5, 'ತ': 6, 'ಥ': 7, 'ದ': 8, 'ಧ': 9, 'ನ': 0, 'ಪ': 1, 'ಫ': 2, 'ಬ': 3, 'ಭ': 4, 'ಮ': 5, 'ಯ': 1, 'ರ': 2, 'ಲ': 3, 'ವ': 4, 'ಶ': 5, 'ಷ': 6, 'ಸ': 7, 'ಹ': 8, # Malayalam 'ക': 1, 'ഖ': 2, 'ഗ': 3, 'ഘ': 4, 'ങ': 5, 'ച': 6, 'ഛ': 7, 'ജ': 8, 'ഝ': 9, 'ഞ': 0, 'ട': 1, 'ഠ': 2, 'ഡ': 3, 'ഢ': 4, 'ണ': 5, 'ത': 6, 'ഥ': 7, 'ദ': 8, 'ധ': 9, 'ന': 0, 'പ': 1, 'ഫ': 2, 'ബ': 3, 'ഭ': 4, 'മ': 5, 'യ': 1, 'ര': 2, 'ല': 3, 'വ': 4, 'ശ': 5, 'ഷ': 6, 'സ': 7, 'ഹ': 8, # Vokale (Svara) 'अ': 0, 'आ': 0, 'इ': 0, 'ई': 0, 'उ': 0, 'ऊ': 0, 'ऋ': 0, 'ॠ': 0, 'ऌ': 0, 'ॡ': 0, 'ए': 0, 'ऐ': 0, 'ओ': 0, 'औ': 0, # Zusätzliche Zeichen 'क्ष': 1, 'त्र': 6, 'ज्ञ': 8, # Anusvaras und Visargas 'ं': 0, 'ः': 0, # Halante (Virama) '्': 0, # Ziffern '०': 0, '१': 1, '२': 2, '३': 3, '४': 4, '५': 5, '६': 6, '७': 7, '८': 8, '९': 9, # Sonderzeichen 'ॐ': 0, # Om-Symbol # Vokalzeichen (Matra) 'ा': 0, 'ि': 0, 'ी': 0, 'ु': 0, 'ू': 0, 'ृ': 0, 'ॄ': 0, 'ॢ': 0, 'ॣ': 0, 'े': 0, 'ै': 0, 'ो': 0, 'ौ': 0, # Zusätzliche Zeichen für vollständige Abdeckung 'ॅ': 0, 'ॆ': 0, 'ॉ': 0, 'ॊ': 0, 'ऍ': 0, 'ऎ': 0, 'ऑ': 0, 'ऒ': 0, 'ॎ': 0, 'ॏ': 0, # Vedische Erweiterungen 'ᳵ': 0, 'ᳶ': 0, 'ॽ': 0, } # Stelle sicher, dass Diakritika entfernt werden, bevor auf das Wörterbuch zugegriffen wird letter_no_diacritics = strip_diacritics(letter) if letter_no_diacritics in values: return values[letter_no_diacritics.lower()] elif letter.strip() == "": # Ignoriere Leerzeichen und leere Zeilen return 0 else: # Gib eine spezifische Warnung aus, wenn das Zeichen unbekannt ist logger.info(f"Warnung: Unbekanntes Zeichen '{letter}' ignoriert.") return 0 def calculate_gematria(text): """Calculate the Gematria value of a given Hebrew text, ignoring spaces and non-Hebrew characters.""" return sum(letter_to_value(letter) for letter in text if letter.strip() != "") [File Ends] gematria.py [File Begins] hindu.py import logging logger = logging.getLogger(__name__) import json import os import re from deep_translator import GoogleTranslator from gematria import calculate_gematria import math def process_json_files(start=1, end=10, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): base_path = "texts/rigveda" translator = GoogleTranslator(source='ne', target=tlang) results = [] for i in range(start, end + 1): file_name = f"{base_path}/rigveda_mandala_{i:02}.json" #file_name = f"{base_path}/mahabharata_book_{i:02}.json" try: with open(file_name, 'r', encoding='utf-8') as file: data = json.load(file) # Concatenate all suktas for the current book full_text = "" for sukta in data: full_text += sukta["text"] + " " # Add a space between suktas clean_text = full_text if strip_in_braces: clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) if strip_diacritics: clean_text = re.sub(r'[^\u0900-\u097F\s]', '', clean_text) # Keep only Devanagari and whitespace clean_text = re.sub(r'[\u0951-\u0954\u0964\u0965]+', '', clean_text) # Remove pitch marks, Danda, Double Danda clean_text = re.sub(r'[०१२३४५६७८९]+', '', clean_text) # Remove Devanagari digits clean_text = clean_text.replace(":", "") # Remove colons clean_text = clean_text.replace("?", "") # Remove question marks clean_text = clean_text.replace("!", "") # Remove exclamation marks # Add any other characters to remove here, e.g.: clean_text = clean_text.replace("-", "") clean_text = clean_text.replace("'", "") # ... clean_text = clean_text.replace("\n\n ", " ") clean_text = clean_text.replace("\n", " ") clean_text = re.sub(r'\s+', ' ', clean_text) # Condense multiple spaces if strip_spaces: clean_text = clean_text.replace(" ", "") text_length = len(clean_text) selected_characters_per_round = {} for round_num in map(int, rounds.split(',')): if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): if round_num > 0: current_position = step - 1 else: current_position = text_length - 1 if step == 1 else text_length - step completed_rounds = 0 selected_characters = "" while completed_rounds < abs(round_num): selected_characters += clean_text[current_position % text_length] current_position += step if round_num > 0 else -step if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ (round_num < 0 and current_position < 0): completed_rounds += 1 selected_characters_per_round[round_num] = selected_characters if average_compile and len(selected_characters_per_round) > 1: result_text = "" keys = sorted(selected_characters_per_round.keys()) for j in range(len(keys) - 1): # Changed i to j to avoid conflict with outer loop result_text = average_gematria(selected_characters_per_round[keys[j]], selected_characters_per_round[keys[j + 1]]) else: result_text = ''.join(selected_characters_per_round.values()) if length != 0: result_text = result_text[:length] translated_text = translator.translate(result_text) if result_text and translate else "" if result_text: results.append({ "book": f"Rigveda {i}.", "title": f"Mandala {i}", "result_text": result_text, "result_sum": calculate_gematria(result_text), "translated_text": translated_text }) except (FileNotFoundError, json.JSONDecodeError, KeyError) as e: results.append({"error": f"Error processing {file_name}: {e}"}) return results [File Ends] hindu.py [File Begins] populate_translations.py import sqlite3 import logging from deep_translator import GoogleTranslator, exceptions from tqdm import tqdm import threading import time from queue import Queue # Constants DATABASE_FILE = 'gematria.db' # Use your actual database file name BATCH_SIZE = 1000 NUM_THREADS = 10 # Number of parallel translation threads # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Initialize the translator translator = GoogleTranslator(source='yi', target='en') logging.info("Translator initialized.") # Separate Queue and tqdm translation_queue = Queue() # Regular queue translation_queue_tqdm = tqdm(total=0, dynamic_ncols=True, desc="Translation Queue") # tqdm for the queue total_translations_tqdm = tqdm(total=0, dynamic_ncols=True, desc="Total Translations") # tqdm for overall progress # Lock for database access db_lock = threading.Lock() translations_completed = 0 # Counter for completed translations def translate_and_store(phrase: str) -> str: """Translates a Hebrew phrase to English using Google Translate.""" global translator max_retries = 3 retries = 0 while retries < max_retries: try: translation = translator.translate(phrase) return translation except (exceptions.TranslationNotFound, exceptions.NotValidPayload, exceptions.ServerException, exceptions.RequestError) as e: retries += 1 logging.warning(f"Error translating phrase '{phrase}': {e}. Retrying... ({retries}/{max_retries})") logging.error(f"Failed to translate phrase '{phrase}' after {max_retries} retries.") return None def translation_worker(): """Worker thread to process translations from the queue.""" global conn, translator, translation_queue, db_lock, translation_queue_tqdm, translations_completed, total_translations_tqdm while True: phrase = translation_queue.get() # Get from the actual queue translation_queue_tqdm.update() # Update the tqdm progress bar if phrase is None: # Sentinel value to stop the thread break translation = translate_and_store(phrase) # Acquire the lock before any database interaction for this phrase with db_lock: with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() if translation is not None: cursor.execute("UPDATE results SET translation = ? WHERE words = ?", (translation, phrase)) translations_completed += 1 # Increment the global counter total_translations_tqdm.update() # Update the overall progress bar conn.commit() translation_queue.task_done() def populate_translations(): """Populates translations for all Hebrew phrases in the database.""" global conn, translator, translation_queue, translation_queue_tqdm, total_translations_tqdm with sqlite3.connect(DATABASE_FILE) as conn: cursor = conn.cursor() # Get the total count of distinct phrases needing translation cursor.execute("SELECT COUNT(DISTINCT words) FROM results WHERE translation IS NULL") total_phrases = cursor.fetchone()[0] logging.info(f"Found {total_phrases} distinct phrases to translate.") # Get distinct Hebrew phrases that need translation using a generator cursor.execute("SELECT DISTINCT words FROM results WHERE translation IS NULL") phrases_generator = (phrase for phrase, in cursor) # Use a generator for tqdm # Set the total for both tqdm progress bars translation_queue_tqdm.total = total_phrases total_translations_tqdm.total = total_phrases # Build the translation queue first for phrase in phrases_generator: translation_queue.put(phrase) # Put into the actual queue translation_queue_tqdm.update() # Update tqdm progress bar # Close the translation queue tqdm after it's fully populated translation_queue_tqdm.close() # Start worker threads AFTER the queue is built threads = [] for _ in range(NUM_THREADS): thread = threading.Thread(target=translation_worker) thread.start() threads.append(thread) # Wait for all tasks to be completed translation_queue.join() # Stop worker threads for _ in range(NUM_THREADS): translation_queue.put(None) # Sentinel value to stop threads for thread in threads: thread.join() logging.info("All translations completed.") def save_translations_periodically(): """Saves translations to the database every minute.""" while True: time.sleep(60) # Wait for 1 minute logging.info("Saving translations to the database...") with db_lock: # Acquire the lock before saving with sqlite3.connect(DATABASE_FILE) as conn: conn.commit() logging.info("Translations saved.") if __name__ == "__main__": # Start the translation process in a separate thread translation_thread = threading.Thread(target=populate_translations) translation_thread.start() # Start the periodic saving thread save_thread = threading.Thread(target=save_translations_periodically) save_thread.start() # Keep the main thread alive while True: time.sleep(1) [File Ends] populate_translations.py [File Begins] quran.py import logging logger = logging.getLogger(__name__) import json import os import re from deep_translator import GoogleTranslator from gematria import calculate_gematria import math # Hebrew gematria values for relevant characters gematria_values = { 'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, 'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, 'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, 'ר': 200, 'ש': 300, 'ת': 400 } # Reverse dictionary for converting gematria values back to Hebrew characters reverse_gematria_values = {v: k for k, v in gematria_values.items()} # Function to convert a Hebrew string to its gematria values def string_to_gematria(s): return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary # Function to convert a single gematria value to Hebrew characters def gematria_to_string(value): result = [] for val in sorted(reverse_gematria_values.keys(), reverse=True): while value >= val: result.append(reverse_gematria_values[val]) value -= val return ''.join(result) # Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters def average_gematria(str1, str2): # Convert strings to gematria values gematria1 = string_to_gematria(str1) gematria2 = string_to_gematria(str2) # Handle cases where strings have different lengths by padding with 0s max_len = max(len(gematria1), len(gematria2)) gematria1.extend([0] * (max_len - len(gematria1))) gematria2.extend([0] * (max_len - len(gematria2))) # Calculate the average of corresponding gematria values and apply math.ceil average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] # Convert the average gematria values back to Hebrew characters return ''.join(gematria_to_string(val) for val in average_gematria_values) def process_json_files(start=1, end=114, step=1, rounds="1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): base_path = "texts/quran" translator = GoogleTranslator(source='ar', target=tlang) results = [] for i in range(start, end + 1): file_name = f"{base_path}/{i:03}.json" # Updated file name formatting try: with open(file_name, 'r', encoding='utf-8') as file: data = json.load(file) # Extract text from verses full_text = "" for verse_key, verse_text in data["verse"].items(): full_text += verse_text + " " full_text = full_text.replace("\ufeff", "") clean_text = full_text if strip_in_braces: clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) if strip_diacritics: clean_text = re.sub( r"[\u0610-\u061A\u064B-\u065F\u0670\u06D6-\u06DC\u06DF-\u06E4\u06E7\u06E8\u06EA-\u06ED]+", "", clean_text) if strip_spaces: clean_text = clean_text.replace(" ", "") else: clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") text_length = len(clean_text) selected_characters_per_round = {} for round_num in map(int, rounds.split(',')): # Handle cases where no characters should be selected if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): # Corrected logic for negative rounds and step = 1 if round_num > 0: current_position = step - 1 else: current_position = text_length - 1 if step == 1 else text_length - step completed_rounds = 0 selected_characters = "" while completed_rounds < abs(round_num): selected_characters += clean_text[current_position % text_length] # Update current_position based on the sign of rounds current_position += step if round_num > 0 else -step if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ (round_num < 0 and current_position < 0): completed_rounds += 1 selected_characters_per_round[round_num] = selected_characters if average_compile and len(selected_characters_per_round) > 1: result_text = "" keys = sorted(selected_characters_per_round.keys()) for i in range(len(keys) - 1): result_text = average_gematria(selected_characters_per_round[keys[i]], selected_characters_per_round[keys[i + 1]]) else: result_text = ''.join(selected_characters_per_round.values()) if length != 0: result_text = result_text[:length] translated_text = translator.translate(result_text) if result_text and translate else "" if result_text: # Only append if result_text is not empty results.append({ "book": f"Quran {i}.", "title": data["name"], # Use "name" instead of "title" "result_text": result_text, "result_sum": calculate_gematria(result_text), "translated_text": translated_text }) except FileNotFoundError: results.append({"error": f"File {file_name} not found."}) except json.JSONDecodeError as e: results.append({"error": f"File {file_name} could not be read as JSON: {e}"}) except KeyError as e: results.append({"error": f"Expected key 'verse' is missing in {file_name}: {e}"}) # Updated key return results # Tests test_results = [ #(process_json_files(0, 0, 21, rounds="3", length=0), "שרק"), #(process_json_files(0, 0, 22, rounds="1", length=0), "ת"), #(process_json_files(0, 0, 22, rounds="3", length=0), "תתת"), #(process_json_files(0, 0, 23, rounds="3", length=0), "אבג"), #(process_json_files(0, 0, 11, rounds="1", length=0), "כת"), #(process_json_files(0, 0, 2, rounds="1", length=0), "בדוחילנעצרת"), #(process_json_files(0, 0, 23, rounds="1", length=0), None), # Expect None, when no results #(process_json_files(0, 0, 23, rounds="-1", length=0), None), # Expect None, when no results #(process_json_files(0, 0, 22, rounds="-1", length=0), "א"), #(process_json_files(0, 0, 22, rounds="-2", length=0), "אא"), #(process_json_files(0, 0, 1, rounds="-1", length=0), "תשרקצפעסנמלכיטחזוהדגבא"), # Reversed Hebrew alphabet #(process_json_files(0, 0, 1, rounds="1,-1", length=0), "אבגדהוזחטיכלמנסעפצקרשתתשרקצפעסנמלכיטחזוהדגבא"), # Combined rounds #(process_json_files(0, 0, 22, rounds="1,-1", length=0, average_compile=True), "רא"), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" ] all_tests_passed = True for result, expected in test_results: if expected is None: # Check if no result is expected if not result: logger.info(f"Test passed: Expected no results, got no results.") else: logger.error(f"Test failed: Expected no results, but got: {result}") all_tests_passed = False else: # Check if result is not empty before accessing elements if result: #result_text = result[0]['result_text'] result_text = None if result_text == expected: logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") else: logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") all_tests_passed = False else: logger.error(f"Test failed: Expected '{expected}', but got no results") all_tests_passed = False if all_tests_passed: logger.info("All round tests passed.") [File Ends] quran.py [File Begins] requirements-all.txt aiofiles==23.2.1 annotated-types==0.7.0 anyio==4.6.2.post1 beautifulsoup4==4.12.3 certifi==2024.8.30 charset-normalizer==3.4.0 click==8.1.7 deep-translator==1.11.4 exceptiongroup==1.2.2 fastapi==0.115.4 ffmpy==0.4.0 filelock==3.16.1 fsspec==2024.10.0 fuzzywuzzy==0.18.0 gradio==5.5.0 gradio_calendar==0.0.6 gradio_client==1.4.2 h11==0.14.0 httpcore==1.0.6 httpx==0.27.2 huggingface-hub==0.26.2 idna==3.10 inflect==7.4.0 Jinja2==3.1.4 Levenshtein==0.26.1 markdown-it-py==3.0.0 MarkupSafe==2.1.5 mdurl==0.1.2 more-itertools==10.5.0 numpy==2.1.3 orjson==3.10.11 packaging==24.2 pandas==2.2.3 pillow==11.0.0 pydantic==2.9.2 pydantic_core==2.23.4 pydub==0.25.1 Pygments==2.18.0 python-dateutil==2.9.0.post0 python-Levenshtein==0.26.1 python-multipart==0.0.12 pytz==2024.2 PyYAML==6.0.2 RapidFuzz==3.10.1 requests==2.32.3 rich==13.9.4 ruff==0.7.3 safehttpx==0.1.1 semantic-version==2.10.0 shellingham==1.5.4 six==1.16.0 sniffio==1.3.1 soupsieve==2.6 starlette==0.41.2 tabulate==0.9.0 tomlkit==0.12.0 tqdm==4.67.0 transliterate==1.10.2 typeguard==4.4.1 typer==0.13.0 typing_extensions==4.12.2 tzdata==2024.2 urllib3==2.2.3 uvicorn==0.32.0 websockets==12.0 [File Ends] requirements-all.txt [File Begins] requirements.txt gradio==5.5.0 deep_translator==1.11.4 tabulate==0.9.0 gradio_calendar==0.0.6 inflect==7.4.0 fuzzywuzzy==0.18.0 python-Levenshtein==0.26.1 transliterate==1.10.2 [File Ends] requirements.txt [File Begins] torah.py import logging logger = logging.getLogger(__name__) import json import os import re from deep_translator import GoogleTranslator from gematria import calculate_gematria import math # Hebrew gematria values for relevant characters gematria_values = { 'א': 1, 'ב': 2, 'ג': 3, 'ד': 4, 'ה': 5, 'ו': 6, 'ז': 7, 'ח': 8, 'ט': 9, 'י': 10, 'כ': 20, 'ך': 500, 'ל': 30, 'מ': 40, 'ם': 600, 'נ': 50, 'ן': 700, 'ס': 60, 'ע': 70, 'פ': 80, 'ף': 800, 'צ': 90, 'ץ': 900, 'ק': 100, 'ר': 200, 'ש': 300, 'ת': 400 } # Reverse dictionary for converting gematria values back to Hebrew characters reverse_gematria_values = {v: k for k, v in gematria_values.items()} # Function to convert a Hebrew string to its gematria values def string_to_gematria(s): return [gematria_values.get(char, 0) for char in s] # Handle characters not in the dictionary # Function to convert a single gematria value to Hebrew characters def gematria_to_string(value): result = [] for val in sorted(reverse_gematria_values.keys(), reverse=True): while value >= val: result.append(reverse_gematria_values[val]) value -= val return ''.join(result) # Function to calculate the average gematria values of corresponding characters and convert them to Hebrew characters def average_gematria(str1, str2): # Convert strings to gematria values gematria1 = string_to_gematria(str1) gematria2 = string_to_gematria(str2) # Handle cases where strings have different lengths by padding with 0s max_len = max(len(gematria1), len(gematria2)) gematria1.extend([0] * (max_len - len(gematria1))) gematria2.extend([0] * (max_len - len(gematria2))) # Calculate the average of corresponding gematria values and apply math.ceil average_gematria_values = [math.ceil((g1 + g2) / 2) for g1, g2 in zip(gematria1, gematria2)] # Convert the average gematria values back to Hebrew characters return ''.join(gematria_to_string(val) for val in average_gematria_values) def process_json_files(start, end, step, rounds="1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False): base_path = "texts/torah" translator = GoogleTranslator(source='auto', target=tlang) results = [] for i in range(start, end + 1): file_name = f"{base_path}/{i:02}.json" try: with open(file_name, 'r', encoding='utf-8') as file: data = json.load(file) text_blocks = data["text"] full_text = "" for block in text_blocks: full_text += ' '.join(block) clean_text = full_text if strip_in_braces: clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) if strip_diacritics: clean_text = re.sub(r"[^\u05D0-\u05EA ]+", "", clean_text) if strip_spaces: clean_text = clean_text.replace(" ", "") else: clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") clean_text = clean_text.replace(" ", " ") text_length = len(clean_text) selected_characters_per_round = {} for round_num in map(int, rounds.split(',')): # Handle cases where no characters should be selected if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): # Corrected logic for negative rounds and step = 1 if round_num > 0: current_position = step - 1 else: current_position = text_length - 1 if step == 1 else text_length - step completed_rounds = 0 selected_characters = "" while completed_rounds < abs(round_num): selected_characters += clean_text[current_position % text_length] # Update current_position based on the sign of rounds current_position += step if round_num > 0 else -step if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ (round_num < 0 and current_position < 0): completed_rounds += 1 selected_characters_per_round[round_num] = selected_characters if average_compile and len(selected_characters_per_round) > 1: result_text = "" keys = sorted(selected_characters_per_round.keys()) for i in range(len(keys) - 1): result_text = average_gematria(selected_characters_per_round[keys[i]], selected_characters_per_round[keys[i+1]]) else: result_text = ''.join(selected_characters_per_round.values()) if length != 0: result_text = result_text[:length] translated_text = translator.translate(result_text) if result_text else "" if result_text: # Only append if result_text is not empty results.append({ "book": f"Torah {i}.", "title": data["title"], "result_text": result_text, "result_sum": calculate_gematria(result_text), "translated_text": translated_text }) except FileNotFoundError: results.append({"error": f"File {file_name} not found."}) except json.JSONDecodeError as e: results.append({"error": f"File {file_name} could not be read as JSON: {e}"}) except KeyError as e: results.append({"error": f"Expected key 'text' is missing in {file_name}: {e}"}) return results # Tests test_results = [ #(process_json_files(0, 0, 21, rounds="3", length=0), "שרק"), #(process_json_files(0, 0, 22, rounds="1", length=0), "ת"), #(process_json_files(0, 0, 22, rounds="3", length=0), "תתת"), #(process_json_files(0, 0, 23, rounds="3", length=0), "אבג"), #(process_json_files(0, 0, 11, rounds="1", length=0), "כת"), #(process_json_files(0, 0, 2, rounds="1", length=0), "בדוחילנעצרת"), #(process_json_files(0, 0, 23, rounds="1", length=0), None), # Expect None, when no results #(process_json_files(0, 0, 23, rounds="-1", length=0), None), # Expect None, when no results #(process_json_files(0, 0, 22, rounds="-1", length=0), "א"), #(process_json_files(0, 0, 22, rounds="-2", length=0), "אא"), #(process_json_files(0, 0, 1, rounds="-1", length=0), "תשרקצפעסנמלכיטחזוהדגבא"), # Reversed Hebrew alphabet #(process_json_files(0, 0, 1, rounds="1,-1", length=0), "אבגדהוזחטיכלמנסעפצקרשתתשרקצפעסנמלכיטחזוהדגבא"), # Combined rounds #(process_json_files(0, 0, 22, rounds="1,-1", length=0, average_compile=True), "רא"), # average compile test (400+1) / 2 = math.ceil(200.5)=201=200+1="רא" ] all_tests_passed = True for result, expected in test_results: if expected is None: # Check if no result is expected if not result: logger.info(f"Test passed: Expected no results, got no results.") else: logger.error(f"Test failed: Expected no results, but got: {result}") all_tests_passed = False else: # Check if result is not empty before accessing elements if result: result_text = result[0]['result_text'] if result_text == expected: logger.info(f"Test passed: Expected '{expected}', got '{result_text}'") else: logger.error(f"Test failed: Expected '{expected}', but got '{result_text}'") all_tests_passed = False else: logger.error(f"Test failed: Expected '{expected}', but got no results") all_tests_passed = False if all_tests_passed: logger.info("All round tests passed.") [File Ends] torah.py [File Begins] translation_utils.py # translation_utils.py import logging import sqlite3 from concurrent.futures import ThreadPoolExecutor import functools from deep_translator import GoogleTranslator, exceptions # Constants TRANSLATION_DATABASE_FILE = 'translation_database.db' SUPPORTED_LANGUAGES = {"af", "sq", "am", "ar", "hy", "az", "eu", "be", "bn", "bs", "bg", "ca", "ceb", "ny", "zh-CN", "zh-TW", "co", "hr", "cs", "da", "nl", "en", "eo", "et", "tl", "fi", "fr", "fy", "gl", "ka", "de", "el", "gu", "ht", "ha", "haw", "iw", "hi", "hmn", "hu", "is", "ig", "id", "ga", "it", "ja", "jw", "kn", "kk", "km", "ko", "ku", "ky", "lo", "la", "lv", "lt", "lb", "mk", "mg", "ms", "ml", "mt", "mi", "mr", "mn", "my", "ne", "no", "ps", "fa", "pl", "pt", "pa", "ro", "ru", "sm", "gd", "sr", "st", "sn", "sd", "si", "sk", "sl", "so", "es", "su", "sw", "sv", "tg", "ta", "te", "th", "tr", "uk", "ur", "uz", "vi", "cy", "xh", "yi", "yo", "zu"} # Initialize logger logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def create_translation_table(): """Creates the translation table if it doesn't exist.""" try: with sqlite3.connect(TRANSLATION_DATABASE_FILE) as conn: cursor = conn.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS translations ( phrase TEXT PRIMARY KEY ) ''') # Dynamically add language columns cursor.execute("PRAGMA table_info(translations)") existing_columns = {col[1] for col in cursor.fetchall()} for lang_code in SUPPORTED_LANGUAGES: column_name = lang_code.replace('-', '_') if column_name == "is": # Handle reserved keywords in SQLite column_name = "is_" if column_name not in existing_columns: try: cursor.execute(f"ALTER TABLE translations ADD COLUMN `{column_name}` TEXT") logger.info(f"Added column '{column_name}' to translations table.") except sqlite3.OperationalError as e: if "duplicate column name" in str(e).lower(): logger.debug(f"Column '{column_name}' already exists. Skipping.") else: logger.error(f"Error adding column '{column_name}': {e}") # More specific error conn.commit() except Exception as e: # Broad exception handling to catch any other potential issues logger.error(f"An unexpected error occurred in create_translation_table: {e}") @functools.lru_cache(maxsize=1000) # Use the correct decorator name def translate_cached(text, target_language, source_language="auto"): # Renamed to avoid conflicts """Translates text using Google Translate with caching.""" if not text: return "" try: translator = GoogleTranslator(source=source_language, target=target_language) translated = translator.translate(text) return translated except exceptions.TranslationNotFound: logger.error(f"Translation not found for: {text}") except Exception as e: # Catch generic exceptions logger.exception(f"Translation error: {e}") # Log with traceback return None def get_translation(phrase, target_language, source_language="auto"): """Retrieves a translation from the database or translates and stores it.""" if target_language not in SUPPORTED_LANGUAGES: logger.error(f"Unsupported target language: {target_language}") return None, False # Return None and False for failure try: with sqlite3.connect(TRANSLATION_DATABASE_FILE) as conn: cursor = conn.cursor() column_name = target_language.replace('-', '_') if column_name == "is": column_name = "is_" cursor.execute(f"SELECT `{column_name}` FROM translations WHERE phrase=?", (phrase,)) result = cursor.fetchone() if result and result[0]: # Check that the result is not empty and has a translated value return result[0], True translated_text = translate_cached(phrase, target_language, source_language) if translated_text: cursor.execute(f""" INSERT INTO translations (phrase, `{column_name}`) VALUES (?, ?) ON CONFLICT(phrase) DO UPDATE SET `{column_name}`=excluded.`{column_name}` """, (phrase, translated_text)) conn.commit() return translated_text, True else: return None, False # Explicitly return False when translation fails except sqlite3.Error as e: logger.error(f"Database error: {e}") return None, False # Return explicit failure indicator except Exception as e: logger.exception(f"Unexpected error in get_translation: {e}") # Generic Exception Catch-All return None, False # Return explicit failure indicator def batch_translate(phrases, target_language, source_language="auto"): """Translates multiple phrases concurrently.""" phrases_to_translate = [phrase for phrase in phrases if phrase] with ThreadPoolExecutor() as executor: futures = [executor.submit(get_translation, phrase, target_language, source_language) for phrase in phrases_to_translate] results = [future.result() for future in futures] translations = {phrase: translation for phrase, (translation, _) in zip(phrases_to_translate, results)} for phrase in phrases: if not phrase: translations[phrase] = None return translations [File Ends] translation_utils.py [File Begins] tripitaka.py # TODO: Auto-tune by step / 2 , 4, 8, 16, 32, 64, so that the translation result has spaces import logging logger = logging.getLogger(__name__) import json import os import re from deep_translator import GoogleTranslator from gematria import calculate_gematria import math import glob import math def process_json_files(start=1, end=52, step=1, rounds="1,-1", length=0, tlang="en", strip_spaces=True, strip_in_braces=True, strip_diacritics=True, average_compile=False, translate=False): base_path = "texts/tripitaka" translator = GoogleTranslator(source='ne', target=tlang) # Assuming Nepali for tripitaka as well results = [] for i in range(start, end + 1): file_pattern = f"{base_path}/{i:02}*.json" # Using glob for flexible file names for file_name in glob.glob(file_pattern): try: with open(file_name, 'r', encoding='utf-8') as file: data = json.load(file) full_text = "" for gatha in data.get("gathas", []): # Accessing 'gathas' safely full_text += gatha + " " clean_text = full_text if strip_in_braces: clean_text = re.sub(r"\[.*?\]", "", clean_text, flags=re.DOTALL) if strip_diacritics: clean_text = re.sub(r'[^\u0900-\u097F\s]', '', clean_text) clean_text = re.sub(r'[\u0951-\u0954\u0964\u0965]+', '', clean_text) clean_text = re.sub(r'[०१२३४५६७८९]+', '', clean_text) clean_text = clean_text.replace(":", "") clean_text = clean_text.replace("?", "") clean_text = clean_text.replace("!", "") clean_text = clean_text.replace("-", "") clean_text = clean_text.replace("'", "") clean_text = clean_text.replace("\n\n ", " ") clean_text = clean_text.replace("\n", " ") clean_text = re.sub(r'\s+', ' ', clean_text) if strip_spaces: clean_text = clean_text.replace(" ", "") text_length = len(clean_text) #step=math.ceil(step/64) selected_characters_per_round = {} for round_num in map(int, rounds.split(',')): if not (round_num == 1 and step > text_length) and not (round_num == -1 and step > text_length): if round_num > 0: current_position = step - 1 else: current_position = text_length - 1 if step == 1 else text_length - step completed_rounds = 0 selected_characters = "" while completed_rounds < abs(round_num): selected_characters += clean_text[current_position % text_length] current_position += step if round_num > 0 else -step if (round_num > 0 and current_position >= text_length * (completed_rounds + 1)) or \ (round_num < 0 and current_position < text_length * completed_rounds -1): # corrected condition here completed_rounds += 1 selected_characters_per_round[round_num] = selected_characters if average_compile and len(selected_characters_per_round) > 1: result_text = "" keys = sorted(selected_characters_per_round.keys()) for j in range(len(keys) - 1): # Changed i to j to avoid conflict with outer loop result_text = average_gematria(selected_characters_per_round[keys[j]], selected_characters_per_round[keys[j + 1]]) else: result_text = ''.join(selected_characters_per_round.values()) if length != 0: result_text = result_text[:length] translated_text = translator.translate(result_text) if result_text and translate else "" if result_text: results.append({ "book": f"Tripitaka {i}.", "title": f'{data.get("title")} {data.get("book_name")} {data.get("chapter")}', "result_text": result_text, "result_sum": calculate_gematria(result_text), "translated_text": translated_text }) except (FileNotFoundError, json.JSONDecodeError, KeyError) as e: results.append({"error": f"Error processing {file_name}: {e}"}) return results [File Ends] tripitaka.py [File Begins] util.py import json import re def process_json_files(start, end): """ Processes JSON files containing Tanach text and returns a dictionary mapping book IDs to their data. Args: start: The starting book ID (inclusive). end: The ending book ID (inclusive). Returns: A dictionary where keys are book IDs and values are dictionaries containing 'title' and 'text' fields. """ base_path = "texts" results = {} # Use a dictionary to store results for i in range(start, end + 1): file_name = f"{base_path}/{i:02}.json" try: with open(file_name, 'r', encoding='utf-8') as file: data = json.load(file) if data: # Store book ID as key and book data as value results[i] = {"title": data.get("title", "No title"), "text": data.get("text", [])} except FileNotFoundError: logging.warning(f"File {file_name} not found.") except json.JSONDecodeError as e: logging.warning(f"File {file_name} could not be read as JSON: {e}") except KeyError as e: logging.warning(f"Expected key 'text' is missing in {file_name}: {e}") return results [File Ends] util.py [File Begins] utils.py import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) import inflect from datetime import datetime, date from deep_translator import GoogleTranslator # Custom function to convert number to ordinal words def number_to_ordinal_word(number): ordinal_dict = { 1: "first", 2: "second", 3: "third", 4: "fourth", 5: "fifth", 6: "sixth", 7: "seventh", 8: "eighth", 9: "ninth", 10: "tenth", 11: "eleventh", 12: "twelfth", 13: "thirteenth", 14: "fourteenth", 15: "fifteenth", 16: "sixteenth", 17: "seventeenth", 18: "eighteenth", 19: "nineteenth", 20: "twentieth", 21: "twentyfirst", 22: "twentysecond", 23: "twentythird", 24: "twentyfourth", 25: "twentyfifth", 26: "twentysixth", 27: "twentyseventh", 28: "twentyeighth", 29: "twentyninth", 30: "thirtieth", 31: "thirtyfirst" } return ordinal_dict.get(number, "") def custom_normalize(text): mappings = { 'ü': 'ue', 'ö': 'oe', 'ä': 'ae', 'ß': 'ss', 'Ü': 'Ue', 'Ö': 'Oe', 'Ä': 'Ae', 'á': 'a', 'à': 'a', 'â': 'a', 'ã': 'a', 'å': 'aa', 'ā': 'a', 'ă': 'a', 'ą': 'a', 'Á': 'A', 'À': 'A', 'Â': 'A', 'Ã': 'A', 'Å': 'Aa', 'Ā': 'A', 'Ă': 'A', 'Ą': 'A', 'é': 'e', 'è': 'e', 'ê': 'e', 'ë': 'e', 'ē': 'e', 'ĕ': 'e', 'ė': 'e', 'ę': 'e', 'ě': 'e', 'É': 'E', 'È': 'E', 'Ê': 'E', 'Ë': 'E', 'Ē': 'E', 'Ĕ': 'E', 'Ė': 'E', 'Ę': 'E', 'Ě': 'E', 'í': 'i', 'ì': 'i', 'î': 'i', 'ï': 'i', 'ī': 'i', 'ĭ': 'i', 'į': 'i', 'ı': 'i', 'Í': 'I', 'Ì': 'I', 'Î': 'I', 'Ï': 'I', 'Ī': 'I', 'Ĭ': 'I', 'Į': 'I', 'I': 'I', 'ó': 'o', 'ò': 'o', 'ô': 'o', 'õ': 'o', 'ø': 'oe', 'ō': 'o', 'ŏ': 'o', 'ő': 'o', 'Ó': 'O', 'Ò': 'O', 'Ô': 'O', 'Õ': 'O', 'Ø': 'Oe', 'Ō': 'O', 'Ŏ': 'O', 'Ő': 'O', 'ú': 'u', 'ù': 'u', 'û': 'u', 'ū': 'u', 'ŭ': 'u', 'ů': 'u', 'ű': 'u', 'ų': 'u', 'Ú': 'U', 'Ù': 'U', 'Û': 'U', 'Ü': 'Ue', 'Ū': 'U', 'Ŭ': 'U', 'Ů': 'U', 'Ű': 'U', 'Ų': 'U', 'ç': 'c', 'ć': 'c', 'ĉ': 'c', 'ċ': 'c', 'č': 'c', 'Ç': 'C', 'Ć': 'C', 'Ĉ': 'C', 'Ċ': 'C', 'Č': 'C', 'ñ': 'n', 'ń': 'n', 'ņ': 'n', 'ň': 'n', 'ŋ': 'n', 'Ñ': 'N', 'Ń': 'N', 'Ņ': 'N', 'Ň': 'N', 'Ŋ': 'N', 'ý': 'y', 'ÿ': 'y', 'ŷ': 'y', 'Ý': 'Y', 'Ÿ': 'Y', 'Ŷ': 'Y', 'ž': 'zh', 'ź': 'z', 'ż': 'z', 'Ž': 'Zh', 'Ź': 'Z', 'Ż': 'Z', 'ð': 'd', 'Ð': 'D', 'þ': 'th', 'Þ': 'Th', 'ł': 'l', 'Ł': 'L', 'đ': 'd', 'Đ': 'D', 'æ': 'ae', 'Æ': 'Ae', 'œ': 'oe', 'Œ': 'Oe', 'ś': 's', 'ŝ': 's', 'ş': 's', 'š': 's', 'Ś': 'S', 'Ŝ': 'S', 'Ş': 'S', 'Š': 'S', 'ť': 't', 'ţ': 't', 'ŧ': 't', 'Ť': 'T', 'Ţ': 'T', 'Ŧ': 'T', 'ŕ': 'r', 'ř': 'r', 'Ŕ': 'R', 'Ř': 'R', 'ľ': 'l', 'ĺ': 'l', 'ļ': 'l', 'ŀ': 'l', 'Ľ': 'L', 'Ĺ': 'L', 'Ļ': 'L', 'Ŀ': 'L', 'ē': 'e', 'Ē': 'E', 'ň': 'n', 'Ň': 'N', 'ğ': 'g', 'Ğ': 'G', 'ġ': 'g', 'Ġ': 'G', 'ħ': 'h', 'Ħ': 'H', 'ı': 'i', 'İ': 'I', 'ĵ': 'j', 'Ĵ': 'J', 'ķ': 'k', 'Ķ': 'K', 'ļ': 'l', 'Ļ': 'L', 'ņ': 'n', 'Ņ': 'N', 'ŧ': 't', 'Ŧ': 'T', 'ŭ': 'u', 'Ŭ': 'U' } for key, value in mappings.items(): text = text.replace(key, value) return text # Convert a date to words with an ordinal day def date_to_words(date_obj): inf_engine = inflect.engine() if isinstance(date_obj, (date, datetime)): year = date_obj.year month = date_obj.strftime("%B") if hasattr(date_obj, 'month') else None day_ordinal = number_to_ordinal_word(date_obj.day) if hasattr(date_obj, 'day') else None elif isinstance(date_obj, str): try: # Attempt to parse full date first date_obj = datetime.strptime(date_obj, "%Y-%m-%d") year = date_obj.year month = date_obj.strftime("%B") day_ordinal = number_to_ordinal_word(date_obj.day) except ValueError: try: # Try year-month date_obj = datetime.strptime(date_obj, "%Y-%m") year = date_obj.year month = date_obj.strftime("%B") day_ordinal = None except ValueError: try: # Try just year date_obj = datetime.strptime(date_obj, "%Y") year = date_obj.year month = None day_ordinal = None except ValueError: raise ValueError("Invalid date format. Use YYYY-MM-DD, YYYY-MM, or YYYY.") else: raise TypeError("date_obj must be a datetime, date, or string object.") if 1900 <= year <= 1999: year_words = f"{inf_engine.number_to_words(year // 100, andword='')} hundred" if year % 100 != 0: year_words += f" {inf_engine.number_to_words(year % 100, andword='')}" else: year_words = inf_engine.number_to_words(year, andword='') year_formatted = year_words.replace(',', '') parts = [] if day_ordinal: parts.append(day_ordinal) if month: parts.append(month) parts.append(year_formatted) return " ".join(parts) def translate_date_to_words(date, lang='en'): """Converts a date to words in the specified language.""" if date is None: return "No date selected" date_string = date.strftime("%Y-%m-%d") logger.info(f"Date string: {date_string}") date_in_words = date_to_words(date_string) logger.info(f"Date in words: {date_in_words}") translator = GoogleTranslator(source='auto', target=lang) translated_date_words = translator.translate(date_in_words) logger.info(f"Translated date words: {translated_date_words}") # Normalize the text if it contains any special characters translated_date_words = custom_normalize(translated_date_words) logger.info(f"Normalized date words: {translated_date_words}") return translated_date_words [File Ends] utils.py <-- File Content Ends Instruction: Okay Echo, now you know the code. Please give me a function overview of the code, with headers and subheaders, in Markdown format. And in the following conversation, you stick to that main function overview, so long as it is feasible.