File size: 10,439 Bytes
3045238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e594864
3045238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e594864
3045238
 
 
 
e594864
 
 
 
 
 
 
 
 
 
 
 
 
3045238
 
 
 
e594864
3045238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

import gradio as gr
import torah
import bible
import quran
from utils import number_to_ordinal_word, custom_normalize, date_to_words, translate_date_to_words
from gematria import calculate_gematria, strip_diacritics

import pandas as pd
from deep_translator import GoogleTranslator
from gradio_calendar import Calendar
from datetime import datetime
import math
import json
import re
import sqlite3
from collections import defaultdict

# --- Constants ---
DATABASE_FILE = 'gematria.db'
MAX_PHRASE_LENGTH_LIMIT = 20

# --- Database Initialization ---
def initialize_database():
    global conn
    conn = sqlite3.connect(DATABASE_FILE)
    cursor = conn.cursor()
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS results (
        gematria_sum INTEGER,
        words TEXT,
        translation TEXT,
        book TEXT,
        chapter INTEGER,
        verse INTEGER,
        phrase_length INTEGER,
        word_position TEXT, 
        PRIMARY KEY (gematria_sum, words, book, chapter, verse, word_position)
    )
    ''')
    cursor.execute('''
    CREATE INDEX IF NOT EXISTS idx_results_gematria
    ON results (gematria_sum)
    ''')
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS processed_books (
        book TEXT PRIMARY KEY,
        max_phrase_length INTEGER
    )
    ''')
    conn.commit()

# --- Initialize Database ---
initialize_database()

# --- Helper Functions (from Network app.py) ---
def flatten_text(text: List) -> str:
    if isinstance(text, list):
        return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text)
    return text

def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int, int, str]]:
    global conn
    with sqlite3.connect(DATABASE_FILE) as conn:
        cursor = conn.cursor()
        cursor.execute('''
        SELECT words, book, chapter, verse, phrase_length, word_position 
        FROM results 
        WHERE gematria_sum = ? AND phrase_length <= ?
        ''', (gematria_sum, max_words))
        results = cursor.fetchall()
    return results

def get_most_frequent_phrase(results):
    phrase_counts = defaultdict(int)
    for words, book, chapter, verse, phrase_length, word_position in results:
        phrase_counts[words] += 1
    most_frequent_phrase = max(phrase_counts, key=phrase_counts.get) if phrase_counts else None  # Handle empty results
    return most_frequent_phrase

# --- Functions from BOS app.py ---
def create_language_dropdown(label, default_value='en', show_label=True):
    languages = GoogleTranslator(source='en', target='en').get_supported_languages(as_dict=True)
    return gr.Dropdown(
      choices=list(languages.keys()),
      label=label,
      value=default_value,
      show_label=show_label
    )

def calculate_gematria_sum(text, date_words):
    if text or date_words:
        combined_input = f"{text} {date_words}"
        numbers = re.findall(r'\d+', combined_input)
        text_without_numbers = re.sub(r'\d+', '', combined_input)
        number_sum = sum(int(number) for number in numbers)
        text_gematria = calculate_gematria(strip_diacritics(text_without_numbers))
        total_sum = text_gematria + number_sum
        return total_sum
    else:
        return None

def perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, merge_results, include_torah, include_bible, include_quran):
    if step == 0 or rounds_combination == "0,0":
        return None
    
    torah_results = []
    bible_results = []
    quran_results = []
    
    if include_torah:
        torah_results.extend(torah.process_json_files(1, 39, step, rounds_combination, 0, tlang, strip_spaces, strip_in_braces, strip_diacritics))
    
    if include_bible:
        bible_results.extend(bible.process_json_files(40, 66, step, rounds_combination, 0, tlang, strip_spaces, strip_in_braces, strip_diacritics))
    
    if include_quran:
        quran_results.extend(quran.process_json_files(1, 114, step, rounds_combination, 0, tlang, strip_spaces, strip_in_braces, strip_diacritics))

    if merge_results:
        results = []
        max_length = max(len(torah_results), len(bible_results), len(quran_results))
        for i in range(max_length):
            if i < len(torah_results):
                results.append(torah_results[i])
            if i < len(bible_results):
                results.append(bible_results[i])
            if i < len(quran_results):
                results.append(quran_results[i])
    else:
        results = torah_results + bible_results + quran_results

    return results

# --- Main Gradio App ---
with gr.Blocks() as app:
    with gr.Row():
        tlang = create_language_dropdown("Target Language for Translation", default_value='english')
        selected_date = Calendar(type="datetime", label="Date to investigate (optional)", info="Pick a date from the calendar")
        date_language_input = create_language_dropdown("Language of the person/topic (optional) (Date Word Language)", default_value='english')
        date_words_output = gr.Textbox(label="Date in Words Translated (optional)")

    with gr.Row():
        gematria_text = gr.Textbox(label="Name and/or Topic (required)", value="Hans Albert Einstein")
        gematria_result = gr.Number(label="Journal Sum")

    with gr.Row():
        step = gr.Number(label="Jump Width (Steps) for ELS")
        float_step = gr.Number(visible=False, value=1) 
        half_step_btn = gr.Button("Steps / 2")
        double_step_btn = gr.Button("Steps * 2")
        
        with gr.Column():
            round_x = gr.Number(label="Round (1)", value=1)
            round_y = gr.Number(label="Round (2)", value=-1)
            
        rounds_combination = gr.Textbox(label="Combined Rounds", value="1,-1")

    with gr.Row():
        include_torah_chk = gr.Checkbox(label="Include Torah", value=True)
        include_bible_chk = gr.Checkbox(label="Include Bible", value=True)
        include_quran_chk = gr.Checkbox(label="Include Quran", value=True)
        merge_results_chk = gr.Checkbox(label="Merge Results (Torah-Bible-Quran)", value=True)
        
        strip_spaces = gr.Checkbox(label="Strip Spaces from Books", value=True)
        strip_in_braces = gr.Checkbox(label="Strip Text in Braces from Books", value=True)
        strip_diacritics_chk = gr.Checkbox(label="Strip Diacritics from Books", value=True)

    translate_btn = gr.Button("Search with ELS")

    # --- Output Components ---
    markdown_output = gr.Dataframe(label="ELS Results")
    most_frequent_phrase_output = gr.Textbox(label="Most Frequent Phrase in Network Search")

    # --- Event Handlers ---
    def update_date_words(selected_date, date_language_input):
        return translate_date_to_words(selected_date, date_language_input)

    def update_journal_sum(gematria_text, date_words_output):
        sum_value = calculate_gematria_sum(gematria_text, date_words_output)
        return sum_value, sum_value, sum_value

    def update_rounds_combination(round_x, round_y):
        return f"{int(round_x)},{int(round_y)}"

    def update_step_half(float_step):
        new_step = math.ceil(float_step / 2)
        return new_step, float_step / 2

    def update_step_double(float_step):
        new_step = math.ceil(float_step * 2)
        return new_step, float_step * 2

    def perform_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, merge_results, include_torah, include_bible, include_quran, gematria_text, date_words_output):
        els_results = perform_els_search(step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, merge_results, include_torah, include_bible, include_quran)

        # --- Network Search Integration ---
        df_data = []
        for result in els_results:
            gematria_sum = calculate_gematria(result['match'])
            max_words = len(result['match'].split())
            matching_phrases = search_gematria_in_db(gematria_sum, max_words)
            most_frequent_phrase = get_most_frequent_phrase(matching_phrases)

            # Add data to the list for DataFrame creation
            df_data.append({
                'book': result['book'],
                'chapter': result['chapter'],
                'verse': result['verse'],
                'match': result['match'],
                'Most Frequent Phrase': most_frequent_phrase
            })

        # Create DataFrame
        df = pd.DataFrame(df_data)
        df.index = range(1, len(df) + 1)
        df.reset_index(inplace=True)
        df.rename(columns={'index': 'Result Number'}, inplace=True)

        return df, df['Most Frequent Phrase'].iloc[0] if not df.empty else None

    # --- Event Triggers ---
    round_x.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)
    round_y.change(update_rounds_combination, inputs=[round_x, round_y], outputs=rounds_combination)

    selected_date.change(update_date_words, inputs=[selected_date, date_language_input], outputs=[date_words_output])
    date_language_input.change(update_date_words, inputs=[selected_date, date_language_input], outputs=[date_words_output])

    gematria_text.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step])
    date_words_output.change(update_journal_sum, inputs=[gematria_text, date_words_output], outputs=[gematria_result, step, float_step])

    half_step_btn.click(update_step_half, inputs=[float_step], outputs=[step, float_step])
    double_step_btn.click(update_step_double, inputs=[float_step], outputs=[step, float_step])

    translate_btn.click(
        perform_search,
        inputs=[step, rounds_combination, tlang, strip_spaces, strip_in_braces, strip_diacritics_chk, merge_results_chk, include_torah_chk, include_bible_chk, include_quran_chk, gematria_text, date_words_output],
        outputs=[markdown_output, most_frequent_phrase_output]
    )

    app.load(
        update_date_words, 
        inputs=[selected_date, date_language_input], 
        outputs=[date_words_output]
    )
    app.load(
        update_journal_sum, 
        inputs=[gematria_text, date_words_output], 
        outputs=[gematria_result, step, float_step]
    )

if __name__ == "__main__":
    app.launch(share=False)