neuralworm's picture
populate db
396d07b
raw
history blame
13.1 kB
import gradio as gr
import json
import re
import sqlite3
import logging
from collections import defaultdict
from typing import Tuple, Dict, List
from util import process_json_files
from gematria import calculate_gematria
from deep_translator import GoogleTranslator, exceptions
from urllib.parse import quote_plus
from tqdm import tqdm # Import tqdm for progress bars
# Constants
DATABASE_FILE = 'gematria.db'
MAX_PHRASE_LENGTH_LIMIT = 20 # Populate database for phrases up to 5 words
BATCH_SIZE = 1000 # Insert phrases into database in batches
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s')
# Global variables
conn: sqlite3.Connection = None
translator: GoogleTranslator = None
book_names: Dict[int, str] = {}
gematria_cache: Dict[Tuple[int, int], List[Tuple[str, str, int, int]]] = {}
translation_cache: Dict[str, str] = {}
def initialize_database() -> None:
"""Initializes the SQLite database."""
global conn
conn = sqlite3.connect(DATABASE_FILE, isolation_level=None) # Autocommit for faster insertion
cursor = conn.cursor()
# Create tables if they don't exist
cursor.execute('''
CREATE TABLE IF NOT EXISTS results (
gematria_sum INTEGER,
words TEXT,
translation TEXT,
book TEXT,
chapter INTEGER,
verse INTEGER,
PRIMARY KEY (gematria_sum, words, book, chapter, verse)
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS processed_books (
book TEXT PRIMARY KEY,
max_phrase_length INTEGER
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS translations (
hebrew_phrase TEXT PRIMARY KEY,
english_translation TEXT
)
''')
def initialize_translator() -> None:
"""Initializes the Google Translator."""
global translator
translator = GoogleTranslator(source='iw', target='en')
logging.info("Translator initialized.")
def populate_database(start_book: int, end_book: int, max_phrase_length: int = 1) -> None:
"""Populates the database with phrases from the Tanach and their Gematria values."""
global conn, book_names
logging.info(f"Populating database with books from {start_book} to {end_book}...")
cursor = conn.cursor()
for book_id in tqdm(range(start_book, end_book + 1), desc="Processing Books"):
book_data = process_json_files(book_id, book_id) # Get data for the single book
# process_json_files returns a dictionary with book_id as key,
# so access the book data directly
if book_id in book_data:
book_data = book_data[book_id]
if 'title' not in book_data or not isinstance(book_data['title'], str):
logging.warning(f"Skipping book {book_id} due to missing or invalid 'title' field.")
continue
title = book_data['title']
book_names[book_id] = title
# Check if the book is already processed for this max_phrase_length
cursor.execute('''SELECT max_phrase_length FROM processed_books WHERE book = ?''', (title,))
result = cursor.fetchone()
if result and result[0] >= max_phrase_length:
logging.info(f"Skipping book {title}: Already processed with max_phrase_length {result[0]}")
continue
logging.info(f"Processing book {title} with max_phrase_length {max_phrase_length}")
if 'text' not in book_data or not isinstance(book_data['text'], list):
logging.warning(f"Skipping book {book_id} due to missing or invalid 'text' field.")
continue
chapters = book_data['text']
# Faster iteration with enumerate and list comprehension
for chapter_id, chapter in enumerate(chapters):
for verse_id, verse in enumerate(chapter):
verse_text = flatten_text(verse)
# Remove text in square brackets and non-Hebrew characters
verse_text = re.sub(r'\[.*?\]', '', verse_text)
verse_text = re.sub(r"[^\u05D0-\u05EA ]+", "", verse_text)
verse_text = re.sub(r" +", " ", verse_text)
words = verse_text.split()
# Use a generator to avoid building large lists in memory
for length in range(1, max_phrase_length + 1):
for start in range(len(words) - length + 1):
phrase_candidate = " ".join(words[start:start + length])
gematria_sum = calculate_gematria(phrase_candidate.replace(" ", ""))
yield gematria_sum, phrase_candidate, title, chapter_id + 1, verse_id + 1
# Mark the book as processed with the current max_phrase_length
cursor.execute('''
INSERT OR REPLACE INTO processed_books (book, max_phrase_length)
VALUES (?, ?)
''', (title, max_phrase_length))
def insert_phrases_to_db(phrases: List[Tuple[int, str, str, int, int]]) -> None:
"""Inserts a list of phrases into the database efficiently."""
global conn
cursor = conn.cursor()
# Use executemany to insert multiple rows at once
cursor.executemany('''
INSERT OR IGNORE INTO results (gematria_sum, words, book, chapter, verse)
VALUES (?, ?, ?, ?, ?)
''', phrases)
# Commit the changes outside the loop for better performance
conn.commit()
def get_translation(phrase: str) -> str:
"""Retrieves or generates the English translation of a Hebrew phrase."""
global translator, conn, translation_cache
if phrase in translation_cache:
return translation_cache[phrase]
else:
cursor = conn.cursor()
cursor.execute('''
SELECT english_translation FROM translations
WHERE hebrew_phrase = ?
''', (phrase,))
result = cursor.fetchone()
if result and result[0]:
translation = result[0]
return translation
else:
translation = translate_and_store(phrase)
cursor.execute('''
INSERT OR IGNORE INTO translations (hebrew_phrase, english_translation)
VALUES (?, ?)
''', (phrase, translation))
return translation
def translate_and_store(phrase: str) -> str:
"""Translates a Hebrew phrase to English using Google Translate and handles potential errors."""
global translator
max_retries = 3
retries = 0
while retries < max_retries:
try:
translation = translator.translate(phrase)
logging.debug(f"Translated phrase: {translation}")
return translation
except (exceptions.TranslationNotFound, exceptions.NotValidPayload,
exceptions.ServerException, exceptions.RequestError, requests.exceptions.ConnectionError) as e:
retries += 1
logging.warning(f"Error translating phrase '{phrase}': {e}. Retrying... ({retries}/{max_retries})")
logging.error(f"Failed to translate phrase '{phrase}' after {max_retries} retries.")
return "[Translation Error]"
def search_gematria_in_db(gematria_sum: int, max_words: int) -> List[Tuple[str, str, int, int]]:
"""Searches the database for phrases with a given Gematria value and word count.
Returns phrases with word count <= max_words."""
global conn
cursor = conn.cursor()
logging.debug(f"Searching for phrases with Gematria: {gematria_sum} and max words: {max_words}")
cursor.execute('''
SELECT words, book, chapter, verse FROM results WHERE gematria_sum = ?
''', (gematria_sum,)) # Retrieve all matching phrases first
results = cursor.fetchall()
filtered_results = []
logging.debug(f"Found {len(results)} matching phrases before filtering.")
for words, book, chapter, verse in results:
# Filter by word count (including phrases with fewer words)
word_count = len(words.split()) # Correctly split and count words
logging.debug(f"Word count for '{words}': {word_count}")
if word_count <= max_words: # Include phrases with word count <= max_words
filtered_results.append((words, book, chapter, verse))
logging.debug(f"Found {len(filtered_results)} matching phrases after filtering.")
return filtered_results
def gematria_search_interface(phrase: str, max_words: int, show_translation: bool) -> str:
"""The main function for the Gradio interface."""
if not phrase.strip():
return "Please enter a phrase."
global conn, book_names, gematria_cache
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
# Extract numbers from the input text
numbers = re.findall(r'\d+', phrase)
# Calculate Gematria for the remaining text (non-numbers)
text_without_numbers = re.sub(r'\d+', '', phrase)
phrase_gematria = calculate_gematria(text_without_numbers.replace(" ", ""))
# Add sum of numbers to Gematria
phrase_gematria += sum(int(number) for number in numbers)
logging.info(f"Searching for phrases with Gematria: {phrase_gematria}")
# Debugging output
logging.debug(f"Phrase Gematria: {phrase_gematria}")
logging.debug(f"Max Words: {max_words}")
# Check if Gematria is in cache for the specific max_words value
if (phrase_gematria, max_words) in gematria_cache:
matching_phrases = gematria_cache[(phrase_gematria, max_words)]
logging.debug(f"Retrieved matching phrases from cache for max_words: {max_words}.")
else:
# Search in the database
matching_phrases = search_gematria_in_db(phrase_gematria, max_words)
# Cache the results with the max_words value
gematria_cache[(phrase_gematria, max_words)] = matching_phrases
logging.debug(f"Retrieved matching phrases from database for max_words: {max_words}.")
if not matching_phrases:
return "No matching phrases found."
# Sort results by book, chapter, and verse
sorted_phrases = sorted(matching_phrases, key=lambda x: (int(list(book_names.keys())[list(book_names.values()).index(x[1])]), x[2], x[3]))
logging.debug(f"Sorted matching phrases: {sorted_phrases}")
# Group results by book
results_by_book = defaultdict(list)
for words, book, chapter, verse in sorted_phrases:
results_by_book[book].append((words, chapter, verse))
logging.debug(f"Grouped results by book: {results_by_book}")
# Format results for display
results = []
results.append("<div class='results-container'>")
for book, phrases in results_by_book.items():
results.append(f"<h4>Book: {book}</h4>") # Directly display book name
for words, chapter, verse in phrases:
translation = get_translation(words) if show_translation else ""
link = f"https://www.biblegateway.com/passage/?search={quote_plus(book)}+{chapter}%3A{verse}&version=CJB"
results.append(f"""
<div class='result-item'>
<p>Chapter: {chapter}, Verse: {verse}</p>
<p class='hebrew-phrase'>Hebrew Phrase: {words}</p>
<p>Translation: {translation}</p>
<a href='{link}' target='_blank' class='bible-link'>[See on Bible Gateway]</a>
</div>
""")
results.append("</div>") # Close results-container div
conn.close()
# Add CSS styling
style = """
<style>
.results-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
}
.result-item {
border: 1px solid #ccc;
padding: 15px;
border-radius: 5px;
box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1);
}
.hebrew-phrase {
font-family: 'SBL Hebrew', 'Ezra SIL', serif;
direction: rtl;
}
.bible-link {
display: block;
margin-top: 10px;
color: #007bff;
text-decoration: none;
}
</style>
"""
return style + "\n".join(results)
def flatten_text(text: List) -> str:
"""Helper function to flatten nested lists into a single list."""
if isinstance(text, list):
return " ".join(flatten_text(item) if isinstance(item, list) else item for item in text)
return text
def run_app() -> None:
"""Initializes and launches the Gradio app."""
initialize_database()
initialize_translator()
# Pre-populate the database
logging.info("Starting database population...")
phrases_to_insert = [] # Collect phrases before inserting in bulk
for max_phrase_length in range(1, MAX_PHRASE_LENGTH_LIMIT + 1): # Populate for phrases up to MAX_PHRASE_LENGTH_LIMIT words
for gematria_sum, phrase, book, chapter, verse in tqdm(populate_database(1, 39, max_phrase_length=max_phrase_length), desc=f"Populating Database (Max Length: {max_phrase_length})"): # Books 1 to 39
phrases_to_insert.append((gematria_sum, phrase, book, chapter, verse))
if len(phrases_to_insert) >= BATCH_SIZE: # Insert in batches of BATCH_SIZE for efficiency
insert_phrases_to_db(phrases_to_insert)
phrases_to_insert = []
if phrases_to_insert: # Insert remaining phrases
insert_phrases_to_db(phrases_to_insert)
logging.info("Database population complete.")
iface = gr.Interface(
fn=gematria_search_interface,
inputs=[
gr.Textbox(label="Enter word(s) or numbers (e.g., 'abc', '888' or 'abc 111 777')"),
gr.Number(label="Max Word Count in Result Phrases", value=1, minimum=1, maximum=MAX_PHRASE_LENGTH_LIMIT),
gr.Checkbox(label="Show Translation", value=True)
],
outputs=gr.HTML(label="Results"),
title="Gematria Search in Tanach",
description="Search for phrases and/or numbers in the Tanach that have the same Gematria value.",
live=False,
allow_flagging="never"
)
iface.launch()
if __name__ == "__main__":
run_app()