Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
# Ensure the required library is installed | |
os.system("pip install minijinja gradio huggingface_hub") | |
# Initialize the client with the desired model | |
client = InferenceClient("meta-llama/Meta-Llama-3.1-8B") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [system_message] | |
for val in history: | |
if val[0]: | |
messages.append(val[0]) | |
if val[1]: | |
messages.append(val[1]) | |
messages.append(message) | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
def autocomplete(prompt, max_tokens, temperature, top_p): | |
messages = [prompt] | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
# Create the Gradio interface | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# Chat with Meta-Llama") | |
with gr.Tab("Chat Interface"): | |
chatbot = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
with gr.Tab("Notebook Interface"): | |
gr.Markdown("## Notebook Interface with Autocomplete") | |
prompt = gr.Textbox(label="Enter your text") | |
output = gr.Textbox(label="Autocompleted Text", interactive=False) | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
autocomplete_button = gr.Button("Autocomplete") | |
autocomplete_button.click( | |
autocomplete, | |
inputs=[prompt, max_tokens, temperature, top_p], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() |