Spaces:
Runtime error
Runtime error
revert to matplotlib
Browse files- psychohistory.py +72 -34
psychohistory.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import
|
2 |
-
from mpl_toolkits.mplot3d import Axes3D
|
3 |
import networkx as nx
|
4 |
import numpy as np
|
5 |
import json
|
@@ -32,6 +32,8 @@ def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G,
|
|
32 |
return node_count_per_depth
|
33 |
|
34 |
|
|
|
|
|
35 |
def build_graph_from_json(json_data, G):
|
36 |
"""Builds a graph from JSON data, handling subevents recursively."""
|
37 |
|
@@ -57,6 +59,7 @@ def build_graph_from_json(json_data, G):
|
|
57 |
add_event(None, event_data, 0) # Add each event as a root node
|
58 |
|
59 |
|
|
|
60 |
def find_paths(G):
|
61 |
"""Finds paths with highest/lowest probability and longest/shortest durations."""
|
62 |
best_path, worst_path = None, None
|
@@ -92,63 +95,98 @@ def find_paths(G):
|
|
92 |
|
93 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
94 |
|
95 |
-
def
|
96 |
-
"""Draws
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
pos = nx.get_node_attributes(G, 'pos')
|
98 |
labels = nx.get_node_attributes(G, 'label')
|
99 |
|
100 |
if not pos:
|
101 |
print("Graph is empty. No nodes to visualize.")
|
102 |
-
return
|
103 |
|
104 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
|
|
|
|
105 |
|
106 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
107 |
-
|
108 |
-
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
|
109 |
-
text=list(labels.values()), textposition='top center', hoverinfo='text')
|
110 |
|
111 |
-
edge_traces = []
|
112 |
for edge in G.edges():
|
113 |
x_start, y_start, z_start = pos[edge[0]]
|
114 |
x_end, y_end, z_end = pos[edge[1]]
|
115 |
-
|
116 |
-
mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none')
|
117 |
-
edge_traces.append(edge_trace)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
def main(json_data):
|
129 |
G = nx.DiGraph()
|
130 |
-
build_graph_from_json(json_data, G)
|
131 |
|
132 |
-
|
133 |
-
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
134 |
|
135 |
-
|
136 |
-
html_graph = draw_graph_plotly(G)
|
137 |
|
138 |
-
# Now you can use the path variables
|
139 |
if best_path:
|
140 |
-
|
141 |
-
|
142 |
if worst_path:
|
143 |
-
|
144 |
-
|
145 |
if longest_path:
|
146 |
-
|
147 |
-
|
148 |
if shortest_path:
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
return html_graph # Return the HTML string
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
from mpl_toolkits.mplot3d import Axes3D
|
3 |
import networkx as nx
|
4 |
import numpy as np
|
5 |
import json
|
|
|
32 |
return node_count_per_depth
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
def build_graph_from_json(json_data, G):
|
38 |
"""Builds a graph from JSON data, handling subevents recursively."""
|
39 |
|
|
|
59 |
add_event(None, event_data, 0) # Add each event as a root node
|
60 |
|
61 |
|
62 |
+
|
63 |
def find_paths(G):
|
64 |
"""Finds paths with highest/lowest probability and longest/shortest durations."""
|
65 |
best_path, worst_path = None, None
|
|
|
95 |
|
96 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
97 |
|
98 |
+
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
99 |
+
"""Draws a specific path in 3D."""
|
100 |
+
H = G.subgraph(path).copy()
|
101 |
+
pos = nx.get_node_attributes(G, 'pos')
|
102 |
+
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
103 |
+
|
104 |
+
fig = plt.figure(figsize=(16, 12))
|
105 |
+
ax = fig.add_subplot(111, projection='3d')
|
106 |
+
|
107 |
+
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
|
108 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
109 |
+
|
110 |
+
for edge in H.edges():
|
111 |
+
x_start, y_start, z_start = pos[edge[0]]
|
112 |
+
x_end, y_end, z_end = pos[edge[1]]
|
113 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
114 |
+
|
115 |
+
for node, (x, y, z) in pos.items():
|
116 |
+
if node in path:
|
117 |
+
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
118 |
+
|
119 |
+
ax.set_xlabel('Time (weeks)')
|
120 |
+
ax.set_ylabel('Event Probability')
|
121 |
+
ax.set_zlabel('Event Number')
|
122 |
+
ax.set_title('3D Event Tree - Path')
|
123 |
+
|
124 |
+
plt.savefig(filename, bbox_inches='tight')
|
125 |
+
plt.close()
|
126 |
+
|
127 |
+
|
128 |
+
def draw_global_tree_3d(G, filename='global_tree.png'):
|
129 |
+
"""Draws the entire graph in 3D."""
|
130 |
pos = nx.get_node_attributes(G, 'pos')
|
131 |
labels = nx.get_node_attributes(G, 'label')
|
132 |
|
133 |
if not pos:
|
134 |
print("Graph is empty. No nodes to visualize.")
|
135 |
+
return
|
136 |
|
137 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
138 |
+
fig = plt.figure(figsize=(16, 12))
|
139 |
+
ax = fig.add_subplot(111, projection='3d')
|
140 |
|
141 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
142 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
|
|
|
|
143 |
|
|
|
144 |
for edge in G.edges():
|
145 |
x_start, y_start, z_start = pos[edge[0]]
|
146 |
x_end, y_end, z_end = pos[edge[1]]
|
147 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
|
|
|
|
148 |
|
149 |
+
for node, (x, y, z) in pos.items():
|
150 |
+
label = labels.get(node, f"{node}")
|
151 |
+
ax.text(x, y, z, label, fontsize=12, color='black')
|
152 |
|
153 |
+
ax.set_xlabel('Time')
|
154 |
+
ax.set_ylabel('Probability')
|
155 |
+
ax.set_zlabel('Event Number')
|
156 |
+
ax.set_title('3D Event Tree')
|
157 |
+
|
158 |
+
plt.savefig(filename, bbox_inches='tight')
|
159 |
+
plt.close()
|
160 |
|
161 |
|
162 |
def main(json_data):
|
163 |
G = nx.DiGraph()
|
164 |
+
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
|
165 |
|
166 |
+
draw_global_tree_3d(G, filename='global_tree.png')
|
|
|
167 |
|
168 |
+
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
|
|
169 |
|
|
|
170 |
if best_path:
|
171 |
+
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
|
172 |
+
print(f"Average probability: {best_mean_prob:.2f}")
|
173 |
if worst_path:
|
174 |
+
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
|
175 |
+
print(f"Average probability: {worst_mean_prob:.2f}")
|
176 |
if longest_path:
|
177 |
+
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
|
178 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
|
179 |
if shortest_path:
|
180 |
+
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
|
181 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
|
|
|
|
|
182 |
|
183 |
+
if best_path:
|
184 |
+
draw_path_3d(G, best_path, 'best_path.png', 'blue')
|
185 |
+
if worst_path:
|
186 |
+
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
|
187 |
+
if longest_path:
|
188 |
+
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
|
189 |
+
if shortest_path:
|
190 |
+
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
|
191 |
|
192 |
+
return 'global_tree.png' # Return the filename of the global tree
|