import torch import sys import sys from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b') model = AutoModelForCausalLM.from_pretrained( 'stabilityai/stablelm-2-zephyr-1_6b', device_map="auto" ) # Definir el prompt para generar un JSON con eventos anidados prompt = ( "Genera un JSON que describa una serie de eventos consecutivos en un formato similar al siguiente:\n\n" "{\n" " \"events\": {\n" " \"event\": {\n" " \"event_number\": 1,\n" " \"name\": \"conflict_start\",\n" " \"description\": \"Tensions escalate between Iran and Israel\",\n" " \"probability\": 70,\n" " \"duration_days\": 30,\n" " \"subevents\": {\n" " \"event\": {\n" " \"event_number\": 2,\n" " \"name\": \"diplomatic_failure\",\n" " \"description\": \"Diplomatic negotiations fail\",\n" " \"probability\": 60,\n" " \"duration_days\": 15,\n" " \"subevents\": {\n" " \"event\": {\n" " \"event_number\": 3,\n" " \"name\": \"military_clash\",\n" " \"description\": \"Initial military clash at the border\",\n" " \"probability\": 50,\n" " \"duration_days\": 10,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 4,\n" " \"name\": \"escalation\",\n" " \"description\": \"Conflict escalates into full-scale war\",\n" " \"probability\": 40,\n" " \"duration_days\": 180,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 5,\n" " \"name\": \"regional_involvement\",\n" " \"description\": \"Other Middle Eastern countries get involved\",\n" " \"probability\": 30,\n" " \"duration_days\": 365,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 6,\n" " \"name\": \"ceasefire\",\n" " \"description\": \"International powers broker a ceasefire\",\n" " \"probability\": 20,\n" " \"duration_days\": 30\n" " },\n" " {\n" " \"event_number\": 7,\n" " \"name\": \"prolonged_conflict\",\n" " \"description\": \"Conflict continues for over a year\",\n" " \"probability\": 50,\n" " \"duration_days\": 365\n" " }\n" " ]\n" " }\n" " },\n" " {\n" " \"event_number\": 8,\n" " \"name\": \"international_intervention\",\n" " \"description\": \"UN or other international organizations intervene\",\n" " \"probability\": 25,\n" " \"duration_days\": 60\n" " }\n" " ]\n" " }\n" " },\n" " {\n" " \"event_number\": 9,\n" " \"name\": \"containment\",\n" " \"description\": \"Conflict is contained and doesn't escalate\",\n" " \"probability\": 30,\n" " \"duration_days\": 90\n" " }\n" " ]\n" " }\n" " },\n" " \"event\": {\n" " \"event_number\": 10,\n" " \"name\": \"sanctions\",\n" " \"description\": \"Increased sanctions on Iran\",\n" " \"probability\": 70,\n" " \"duration_days\": 180,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 11,\n" " \"name\": \"iran_retaliates\",\n" " \"description\": \"Iran retaliates with cyberattacks\",\n" " \"probability\": 40,\n" " \"duration_days\": 60\n" " },\n" " {\n" " \"event_number\": 12,\n" " \"name\": \"israel_response\",\n" " \"description\": \"Israel responds with targeted airstrikes\",\n" " \"probability\": 50,\n" " \"duration_days\": 60\n" " }\n" " ]\n" " }\n" " }\n" " }\n" " },\n" " \"event\": {\n" " \"event_number\": 13,\n" " \"name\": \"diplomatic_success\",\n" " \"description\": \"Successful diplomatic negotiations\",\n" " \"probability\": 40,\n" " \"duration_days\": 30,\n" " \"subevents\": {\n" " \"event\": [\n" " {\n" " \"event_number\": 14,\n" " \"name\": \"peace_agreement\",\n" " \"description\": \"Iran and Israel sign a peace agreement\",\n" " \"probability\": 20,\n" " \"duration_days\": 60\n" " },\n" " {\n" " \"event_number\": 15,\n" " \"name\": \"temporary_truce\",\n" " \"description\": \"A temporary truce is established\",\n" " \"probability\": 30,\n" " \"duration_days\": 30\n" " }\n" " ]\n" " }\n" " }\n" " }\n" " }\n" " }\n" "}\n\n" "Ahora, genera un JSON similar con eventos anidados, pero cambia los detalles y nĂºmeros para hacer que sea con el input que viene a continuacion, respondiendo solo el JSON: " ) def generate(event): # Generar el texto usando el modelo prompt_msg = [{'role':'system','content':prompt},{'role': 'user', 'content': event}] inputs = tokenizer.apply_chat_template( prompt_msg, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.5, do_sample=True ) # Imprimir la salida generada return tokenizer.decode(tokens[0], skip_special_tokens=False)