File size: 245,249 Bytes
2cbe76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
2023-12-16 15:04:41,022	44k	INFO	{'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 10, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'wdlm': 0}, 'model_dir': './logs\\44k'}
2023-12-16 15:04:41,023	44k	WARNING	F:\GitHub\ai\So-VITS-SVC\�°����ϰ�\so-vits-svc is not a git repository, therefore hash value comparison will be ignored.
2023-12-16 15:04:43,550	44k	INFO	emb_g.weight is not in the checkpoint
2023-12-16 15:04:43,634	44k	INFO	Loaded checkpoint './logs\44k\G_0.pth' (iteration 0)
2023-12-16 15:04:43,750	44k	INFO	Loaded checkpoint './logs\44k\D_0.pth' (iteration 0)
2023-12-16 15:05:20,752	44k	INFO	====> Epoch: 1, cost 39.73 s
2023-12-16 15:05:40,307	44k	INFO	====> Epoch: 2, cost 19.55 s
2023-12-16 15:05:59,694	44k	INFO	====> Epoch: 3, cost 19.39 s
2023-12-16 15:06:19,142	44k	INFO	====> Epoch: 4, cost 19.45 s
2023-12-16 15:06:38,678	44k	INFO	====> Epoch: 5, cost 19.54 s
2023-12-16 15:06:57,869	44k	INFO	====> Epoch: 6, cost 19.19 s
2023-12-16 15:07:17,453	44k	INFO	====> Epoch: 7, cost 19.58 s
2023-12-16 15:07:37,042	44k	INFO	====> Epoch: 8, cost 19.59 s
2023-12-16 15:07:56,804	44k	INFO	====> Epoch: 9, cost 19.76 s
2023-12-16 15:08:16,352	44k	INFO	====> Epoch: 10, cost 19.55 s
2023-12-16 15:08:35,830	44k	INFO	====> Epoch: 11, cost 19.48 s
2023-12-16 15:08:55,383	44k	INFO	====> Epoch: 12, cost 19.55 s
2023-12-16 15:09:15,077	44k	INFO	====> Epoch: 13, cost 19.69 s
2023-12-16 15:09:25,950	44k	INFO	Train Epoch: 14 [27%]
2023-12-16 15:09:25,951	44k	INFO	Losses: [2.7133049964904785, 2.5206117630004883, 13.179529190063477, 26.031518936157227, 1.5554561614990234], step: 200, lr: 9.983762181915804e-05, reference_loss: 46.00041961669922
2023-12-16 15:09:35,599	44k	INFO	====> Epoch: 14, cost 20.52 s
2023-12-16 15:09:55,081	44k	INFO	====> Epoch: 15, cost 19.48 s
2023-12-16 15:10:14,788	44k	INFO	====> Epoch: 16, cost 19.71 s
2023-12-16 15:10:34,315	44k	INFO	====> Epoch: 17, cost 19.53 s
2023-12-16 15:10:53,989	44k	INFO	====> Epoch: 18, cost 19.67 s
2023-12-16 15:11:13,580	44k	INFO	====> Epoch: 19, cost 19.59 s
2023-12-16 15:11:33,136	44k	INFO	====> Epoch: 20, cost 19.56 s
2023-12-16 15:11:52,753	44k	INFO	====> Epoch: 21, cost 19.62 s
2023-12-16 15:12:12,334	44k	INFO	====> Epoch: 22, cost 19.58 s
2023-12-16 15:12:32,372	44k	INFO	====> Epoch: 23, cost 20.04 s
2023-12-16 15:12:51,943	44k	INFO	====> Epoch: 24, cost 19.57 s
2023-12-16 15:13:11,569	44k	INFO	====> Epoch: 25, cost 19.63 s
2023-12-16 15:13:31,325	44k	INFO	====> Epoch: 26, cost 19.76 s
2023-12-16 15:13:46,590	44k	INFO	Train Epoch: 27 [60%]
2023-12-16 15:13:46,591	44k	INFO	Losses: [2.5245213508605957, 2.2742867469787598, 14.102811813354492, 29.21864891052246, 1.0917563438415527], step: 400, lr: 9.967550730505221e-05, reference_loss: 49.2120246887207
2023-12-16 15:13:51,717	44k	INFO	====> Epoch: 27, cost 20.39 s
2023-12-16 15:14:11,286	44k	INFO	====> Epoch: 28, cost 19.57 s
2023-12-16 15:14:30,702	44k	INFO	====> Epoch: 29, cost 19.42 s
2023-12-16 15:14:50,274	44k	INFO	====> Epoch: 30, cost 19.57 s
2023-12-16 15:15:09,671	44k	INFO	====> Epoch: 31, cost 19.40 s
2023-12-16 15:15:29,009	44k	INFO	====> Epoch: 32, cost 19.34 s
2023-12-16 15:15:48,421	44k	INFO	====> Epoch: 33, cost 19.41 s
2023-12-16 15:16:07,845	44k	INFO	====> Epoch: 34, cost 19.42 s
2023-12-16 15:16:27,367	44k	INFO	====> Epoch: 35, cost 19.52 s
2023-12-16 15:16:46,775	44k	INFO	====> Epoch: 36, cost 19.41 s
2023-12-16 15:17:06,200	44k	INFO	====> Epoch: 37, cost 19.42 s
2023-12-16 15:17:25,567	44k	INFO	====> Epoch: 38, cost 19.37 s
2023-12-16 15:17:45,025	44k	INFO	====> Epoch: 39, cost 19.46 s
2023-12-16 15:18:04,089	44k	INFO	Train Epoch: 40 [93%]
2023-12-16 15:18:04,090	44k	INFO	Losses: [2.4473180770874023, 2.847722291946411, 11.493583679199219, 23.61637306213379, 1.0417319536209106], step: 600, lr: 9.951365602954526e-05, reference_loss: 41.44673156738281
2023-12-16 15:18:05,181	44k	INFO	====> Epoch: 40, cost 20.16 s
2023-12-16 15:18:24,849	44k	INFO	====> Epoch: 41, cost 19.67 s
2023-12-16 15:18:44,401	44k	INFO	====> Epoch: 42, cost 19.55 s
2023-12-16 15:19:04,037	44k	INFO	====> Epoch: 43, cost 19.64 s
2023-12-16 15:19:23,422	44k	INFO	====> Epoch: 44, cost 19.39 s
2023-12-16 15:19:42,993	44k	INFO	====> Epoch: 45, cost 19.57 s
2023-12-16 15:20:02,610	44k	INFO	====> Epoch: 46, cost 19.62 s
2023-12-16 15:20:21,948	44k	INFO	====> Epoch: 47, cost 19.34 s
2023-12-16 15:20:41,400	44k	INFO	====> Epoch: 48, cost 19.45 s
2023-12-16 15:21:01,017	44k	INFO	====> Epoch: 49, cost 19.62 s
2023-12-16 15:21:20,617	44k	INFO	====> Epoch: 50, cost 19.60 s
2023-12-16 15:21:40,010	44k	INFO	====> Epoch: 51, cost 19.39 s
2023-12-16 15:21:59,399	44k	INFO	====> Epoch: 52, cost 19.39 s
2023-12-16 15:22:18,958	44k	INFO	====> Epoch: 53, cost 19.56 s
2023-12-16 15:22:29,788	44k	INFO	Train Epoch: 54 [27%]
2023-12-16 15:22:29,789	44k	INFO	Losses: [2.9208569526672363, 2.2710936069488525, 9.842162132263184, 24.396034240722656, 0.9827083945274353], step: 800, lr: 9.933964855674948e-05, reference_loss: 40.4128532409668
2023-12-16 15:22:37,669	44k	INFO	Saving model and optimizer state at iteration 54 to ./logs\44k\G_800.pth
2023-12-16 15:22:38,843	44k	INFO	Saving model and optimizer state at iteration 54 to ./logs\44k\D_800.pth
2023-12-16 15:22:54,576	44k	INFO	====> Epoch: 54, cost 35.62 s
2023-12-16 15:23:13,964	44k	INFO	====> Epoch: 55, cost 19.39 s
2023-12-16 15:23:33,390	44k	INFO	====> Epoch: 56, cost 19.43 s
2023-12-16 15:23:53,150	44k	INFO	====> Epoch: 57, cost 19.76 s
2023-12-16 15:24:12,495	44k	INFO	====> Epoch: 58, cost 19.34 s
2023-12-16 15:24:31,881	44k	INFO	====> Epoch: 59, cost 19.39 s
2023-12-16 15:24:51,232	44k	INFO	====> Epoch: 60, cost 19.35 s
2023-12-16 15:25:10,629	44k	INFO	====> Epoch: 61, cost 19.40 s
2023-12-16 15:25:30,070	44k	INFO	====> Epoch: 62, cost 19.44 s
2023-12-16 15:25:49,473	44k	INFO	====> Epoch: 63, cost 19.40 s
2023-12-16 15:26:08,857	44k	INFO	====> Epoch: 64, cost 19.38 s
2023-12-16 15:26:28,395	44k	INFO	====> Epoch: 65, cost 19.54 s
2023-12-16 15:26:47,925	44k	INFO	====> Epoch: 66, cost 19.53 s
2023-12-16 15:27:03,096	44k	INFO	Train Epoch: 67 [60%]
2023-12-16 15:27:03,097	44k	INFO	Losses: [2.458609104156494, 2.661210775375366, 10.685734748840332, 27.952234268188477, 0.9748334884643555], step: 1000, lr: 9.917834264256819e-05, reference_loss: 44.73262405395508
2023-12-16 15:27:08,009	44k	INFO	====> Epoch: 67, cost 20.08 s
2023-12-16 15:27:27,429	44k	INFO	====> Epoch: 68, cost 19.42 s
2023-12-16 15:27:47,007	44k	INFO	====> Epoch: 69, cost 19.58 s
2023-12-16 15:28:06,297	44k	INFO	====> Epoch: 70, cost 19.29 s
2023-12-16 15:28:25,878	44k	INFO	====> Epoch: 71, cost 19.58 s
2023-12-16 15:28:45,321	44k	INFO	====> Epoch: 72, cost 19.44 s
2023-12-16 15:29:05,157	44k	INFO	====> Epoch: 73, cost 19.84 s
2023-12-16 15:29:24,709	44k	INFO	====> Epoch: 74, cost 19.55 s
2023-12-16 15:29:44,141	44k	INFO	====> Epoch: 75, cost 19.43 s
2023-12-16 15:30:03,675	44k	INFO	====> Epoch: 76, cost 19.53 s
2023-12-16 15:30:23,155	44k	INFO	====> Epoch: 77, cost 19.48 s
2023-12-16 15:30:42,525	44k	INFO	====> Epoch: 78, cost 19.37 s
2023-12-16 15:31:01,863	44k	INFO	====> Epoch: 79, cost 19.34 s
2023-12-16 15:31:20,865	44k	INFO	Train Epoch: 80 [93%]
2023-12-16 15:31:20,865	44k	INFO	Losses: [2.663787364959717, 3.247288465499878, 8.122236251831055, 20.93960189819336, 1.0062497854232788], step: 1200, lr: 9.901729865399597e-05, reference_loss: 35.979164123535156
2023-12-16 15:31:21,967	44k	INFO	====> Epoch: 80, cost 20.10 s
2023-12-16 15:31:41,674	44k	INFO	====> Epoch: 81, cost 19.71 s
2023-12-16 15:32:01,293	44k	INFO	====> Epoch: 82, cost 19.62 s
2023-12-16 15:32:20,806	44k	INFO	====> Epoch: 83, cost 19.51 s
2023-12-16 15:32:40,420	44k	INFO	====> Epoch: 84, cost 19.61 s
2023-12-16 15:32:59,930	44k	INFO	====> Epoch: 85, cost 19.51 s
2023-12-16 15:33:19,674	44k	INFO	====> Epoch: 86, cost 19.74 s
2023-12-16 15:33:39,168	44k	INFO	====> Epoch: 87, cost 19.49 s
2023-12-16 15:33:58,787	44k	INFO	====> Epoch: 88, cost 19.62 s
2023-12-16 15:34:18,402	44k	INFO	====> Epoch: 89, cost 19.61 s
2023-12-16 15:34:37,991	44k	INFO	====> Epoch: 90, cost 19.59 s
2023-12-16 15:34:57,640	44k	INFO	====> Epoch: 91, cost 19.65 s
2023-12-16 15:35:17,108	44k	INFO	====> Epoch: 92, cost 19.47 s
2023-12-16 15:35:36,639	44k	INFO	====> Epoch: 93, cost 19.53 s
2023-12-16 15:35:47,466	44k	INFO	Train Epoch: 94 [27%]
2023-12-16 15:35:47,467	44k	INFO	Losses: [2.3108437061309814, 2.647261381149292, 9.941719055175781, 24.150951385498047, 1.0645778179168701], step: 1400, lr: 9.884415910120204e-05, reference_loss: 40.115352630615234
2023-12-16 15:35:56,623	44k	INFO	====> Epoch: 94, cost 19.98 s
2023-12-16 15:36:17,207	44k	INFO	====> Epoch: 95, cost 20.58 s
2023-12-16 15:36:36,949	44k	INFO	====> Epoch: 96, cost 19.74 s
2023-12-16 15:36:56,492	44k	INFO	====> Epoch: 97, cost 19.54 s
2023-12-16 15:37:15,984	44k	INFO	====> Epoch: 98, cost 19.49 s
2023-12-16 15:37:35,477	44k	INFO	====> Epoch: 99, cost 19.49 s
2023-12-16 15:37:54,962	44k	INFO	====> Epoch: 100, cost 19.48 s
2023-12-16 15:38:14,427	44k	INFO	====> Epoch: 101, cost 19.47 s
2023-12-16 15:38:33,960	44k	INFO	====> Epoch: 102, cost 19.53 s
2023-12-16 15:38:53,427	44k	INFO	====> Epoch: 103, cost 19.47 s
2023-12-16 15:39:13,006	44k	INFO	====> Epoch: 104, cost 19.58 s
2023-12-16 15:39:32,474	44k	INFO	====> Epoch: 105, cost 19.47 s
2023-12-16 15:39:52,098	44k	INFO	====> Epoch: 106, cost 19.62 s
2023-12-16 15:40:07,035	44k	INFO	Train Epoch: 107 [60%]
2023-12-16 15:40:07,035	44k	INFO	Losses: [2.45098876953125, 2.4585273265838623, 9.254941940307617, 23.134368896484375, 1.1095484495162964], step: 1600, lr: 9.868365775378495e-05, reference_loss: 38.40837478637695
2023-12-16 15:40:13,004	44k	INFO	Saving model and optimizer state at iteration 107 to ./logs\44k\G_1600.pth
2023-12-16 15:40:14,156	44k	INFO	Saving model and optimizer state at iteration 107 to ./logs\44k\D_1600.pth
2023-12-16 15:40:26,704	44k	INFO	====> Epoch: 107, cost 34.61 s
2023-12-16 15:40:46,241	44k	INFO	====> Epoch: 108, cost 19.54 s
2023-12-16 15:41:05,834	44k	INFO	====> Epoch: 109, cost 19.59 s
2023-12-16 15:41:25,663	44k	INFO	====> Epoch: 110, cost 19.83 s
2023-12-16 15:41:45,023	44k	INFO	====> Epoch: 111, cost 19.36 s
2023-12-16 15:42:04,616	44k	INFO	====> Epoch: 112, cost 19.59 s
2023-12-16 15:42:24,096	44k	INFO	====> Epoch: 113, cost 19.48 s
2023-12-16 15:42:43,552	44k	INFO	====> Epoch: 114, cost 19.46 s
2023-12-16 15:43:03,031	44k	INFO	====> Epoch: 115, cost 19.48 s
2023-12-16 15:43:22,554	44k	INFO	====> Epoch: 116, cost 19.52 s
2023-12-16 15:43:42,150	44k	INFO	====> Epoch: 117, cost 19.60 s
2023-12-16 15:44:01,854	44k	INFO	====> Epoch: 118, cost 19.70 s
2023-12-16 15:44:21,325	44k	INFO	====> Epoch: 119, cost 19.47 s
2023-12-16 15:44:40,170	44k	INFO	Train Epoch: 120 [93%]
2023-12-16 15:44:40,170	44k	INFO	Losses: [2.4771015644073486, 2.853649854660034, 11.530167579650879, 24.376300811767578, 0.5404216647148132], step: 1800, lr: 9.8523417025536e-05, reference_loss: 41.77764129638672
2023-12-16 15:44:41,229	44k	INFO	====> Epoch: 120, cost 19.90 s
2023-12-16 15:45:00,942	44k	INFO	====> Epoch: 121, cost 19.71 s
2023-12-16 15:45:20,280	44k	INFO	====> Epoch: 122, cost 19.34 s
2023-12-16 15:45:39,893	44k	INFO	====> Epoch: 123, cost 19.61 s
2023-12-16 15:45:59,234	44k	INFO	====> Epoch: 124, cost 19.34 s
2023-12-16 15:46:18,699	44k	INFO	====> Epoch: 125, cost 19.46 s
2023-12-16 15:46:38,264	44k	INFO	====> Epoch: 126, cost 19.57 s
2023-12-16 15:46:57,854	44k	INFO	====> Epoch: 127, cost 19.59 s
2023-12-16 15:47:17,411	44k	INFO	====> Epoch: 128, cost 19.56 s
2023-12-16 15:47:36,828	44k	INFO	====> Epoch: 129, cost 19.42 s
2023-12-16 15:47:56,359	44k	INFO	====> Epoch: 130, cost 19.53 s
2023-12-16 15:48:15,827	44k	INFO	====> Epoch: 131, cost 19.47 s
2023-12-16 15:48:35,133	44k	INFO	====> Epoch: 132, cost 19.30 s
2023-12-16 15:48:54,565	44k	INFO	====> Epoch: 133, cost 19.43 s
2023-12-16 15:49:05,575	44k	INFO	Train Epoch: 134 [27%]
2023-12-16 15:49:05,576	44k	INFO	Losses: [2.5679867267608643, 2.2793493270874023, 7.851959228515625, 20.863174438476562, 0.6462520360946655], step: 2000, lr: 9.835114106370493e-05, reference_loss: 34.20872116088867
2023-12-16 15:49:14,707	44k	INFO	====> Epoch: 134, cost 20.14 s
2023-12-16 15:49:34,111	44k	INFO	====> Epoch: 135, cost 19.40 s
2023-12-16 15:49:53,567	44k	INFO	====> Epoch: 136, cost 19.46 s
2023-12-16 15:50:12,940	44k	INFO	====> Epoch: 137, cost 19.37 s
2023-12-16 15:50:32,346	44k	INFO	====> Epoch: 138, cost 19.41 s
2023-12-16 15:50:51,737	44k	INFO	====> Epoch: 139, cost 19.39 s
2023-12-16 15:51:11,084	44k	INFO	====> Epoch: 140, cost 19.35 s
2023-12-16 15:51:30,487	44k	INFO	====> Epoch: 141, cost 19.40 s
2023-12-16 15:51:49,943	44k	INFO	====> Epoch: 142, cost 19.46 s
2023-12-16 15:52:09,267	44k	INFO	====> Epoch: 143, cost 19.32 s
2023-12-16 15:52:28,667	44k	INFO	====> Epoch: 144, cost 19.40 s
2023-12-16 15:52:48,041	44k	INFO	====> Epoch: 145, cost 19.37 s
2023-12-16 15:53:07,455	44k	INFO	====> Epoch: 146, cost 19.41 s
2023-12-16 15:53:22,494	44k	INFO	Train Epoch: 147 [60%]
2023-12-16 15:53:22,495	44k	INFO	Losses: [2.527799606323242, 2.258890151977539, 7.608017921447754, 19.962331771850586, 0.5410811901092529], step: 2200, lr: 9.819144027000834e-05, reference_loss: 32.89812088012695
2023-12-16 15:53:27,410	44k	INFO	====> Epoch: 147, cost 19.95 s
2023-12-16 15:53:46,842	44k	INFO	====> Epoch: 148, cost 19.43 s
2023-12-16 15:54:06,183	44k	INFO	====> Epoch: 149, cost 19.34 s
2023-12-16 15:54:25,633	44k	INFO	====> Epoch: 150, cost 19.45 s
2023-12-16 15:54:45,022	44k	INFO	====> Epoch: 151, cost 19.39 s
2023-12-16 15:55:04,427	44k	INFO	====> Epoch: 152, cost 19.41 s
2023-12-16 15:55:23,826	44k	INFO	====> Epoch: 153, cost 19.40 s
2023-12-16 15:55:43,255	44k	INFO	====> Epoch: 154, cost 19.43 s
2023-12-16 15:56:02,827	44k	INFO	====> Epoch: 155, cost 19.57 s
2023-12-16 15:56:22,196	44k	INFO	====> Epoch: 156, cost 19.37 s
2023-12-16 15:56:41,582	44k	INFO	====> Epoch: 157, cost 19.39 s
2023-12-16 15:57:00,942	44k	INFO	====> Epoch: 158, cost 19.36 s
2023-12-16 15:57:20,430	44k	INFO	====> Epoch: 159, cost 19.49 s
2023-12-16 15:57:39,208	44k	INFO	Train Epoch: 160 [93%]
2023-12-16 15:57:39,209	44k	INFO	Losses: [2.898914337158203, 2.1981236934661865, 3.2429311275482178, 16.30094337463379, 0.4817192256450653], step: 2400, lr: 9.803199879555537e-05, reference_loss: 25.12263298034668
2023-12-16 15:57:45,179	44k	INFO	Saving model and optimizer state at iteration 160 to ./logs\44k\G_2400.pth
2023-12-16 15:57:46,463	44k	INFO	Saving model and optimizer state at iteration 160 to ./logs\44k\D_2400.pth
2023-12-16 15:57:53,592	44k	INFO	====> Epoch: 160, cost 33.16 s
2023-12-16 15:58:13,664	44k	INFO	====> Epoch: 161, cost 20.07 s
2023-12-16 15:58:33,743	44k	INFO	====> Epoch: 162, cost 20.08 s
2023-12-16 15:58:53,249	44k	INFO	====> Epoch: 163, cost 19.51 s
2023-12-16 15:59:13,104	44k	INFO	====> Epoch: 164, cost 19.85 s
2023-12-16 15:59:32,464	44k	INFO	====> Epoch: 165, cost 19.36 s
2023-12-16 15:59:52,197	44k	INFO	====> Epoch: 166, cost 19.73 s
2023-12-16 16:00:11,606	44k	INFO	====> Epoch: 167, cost 19.41 s
2023-12-16 16:00:31,166	44k	INFO	====> Epoch: 168, cost 19.56 s
2023-12-16 16:00:50,583	44k	INFO	====> Epoch: 169, cost 19.42 s
2023-12-16 16:01:10,060	44k	INFO	====> Epoch: 170, cost 19.48 s
2023-12-16 16:01:29,670	44k	INFO	====> Epoch: 171, cost 19.61 s
2023-12-16 16:01:49,211	44k	INFO	====> Epoch: 172, cost 19.54 s
2023-12-16 16:02:08,850	44k	INFO	====> Epoch: 173, cost 19.64 s
2023-12-16 16:02:19,789	44k	INFO	Train Epoch: 174 [27%]
2023-12-16 16:02:19,790	44k	INFO	Losses: [2.1893320083618164, 2.635559320449829, 11.227259635925293, 25.670455932617188, 0.6490182280540466], step: 2600, lr: 9.786058211724074e-05, reference_loss: 42.37162399291992
2023-12-16 16:02:29,001	44k	INFO	====> Epoch: 174, cost 20.15 s
2023-12-16 16:02:48,647	44k	INFO	====> Epoch: 175, cost 19.65 s
2023-12-16 16:03:08,256	44k	INFO	====> Epoch: 176, cost 19.61 s
2023-12-16 16:03:27,795	44k	INFO	====> Epoch: 177, cost 19.54 s
2023-12-16 16:03:47,377	44k	INFO	====> Epoch: 178, cost 19.58 s
2023-12-16 16:04:06,754	44k	INFO	====> Epoch: 179, cost 19.38 s
2023-12-16 16:04:26,378	44k	INFO	====> Epoch: 180, cost 19.62 s
2023-12-16 16:04:46,184	44k	INFO	====> Epoch: 181, cost 19.81 s
2023-12-16 16:05:05,947	44k	INFO	====> Epoch: 182, cost 19.76 s
2023-12-16 16:05:25,523	44k	INFO	====> Epoch: 183, cost 19.58 s
2023-12-16 16:05:45,250	44k	INFO	====> Epoch: 184, cost 19.73 s
2023-12-16 16:06:04,718	44k	INFO	====> Epoch: 185, cost 19.47 s
2023-12-16 16:06:24,431	44k	INFO	====> Epoch: 186, cost 19.71 s
2023-12-16 16:06:39,485	44k	INFO	Train Epoch: 187 [60%]
2023-12-16 16:06:39,486	44k	INFO	Losses: [2.6317648887634277, 2.7047290802001953, 9.169486999511719, 26.55154037475586, 0.713068425655365], step: 2800, lr: 9.77016778842374e-05, reference_loss: 41.770591735839844
2023-12-16 16:06:44,419	44k	INFO	====> Epoch: 187, cost 19.99 s
2023-12-16 16:07:03,940	44k	INFO	====> Epoch: 188, cost 19.52 s
2023-12-16 16:07:23,717	44k	INFO	====> Epoch: 189, cost 19.78 s
2023-12-16 16:07:43,332	44k	INFO	====> Epoch: 190, cost 19.62 s
2023-12-16 16:08:02,969	44k	INFO	====> Epoch: 191, cost 19.64 s
2023-12-16 16:08:22,442	44k	INFO	====> Epoch: 192, cost 19.47 s
2023-12-16 16:08:42,190	44k	INFO	====> Epoch: 193, cost 19.75 s
2023-12-16 16:09:01,815	44k	INFO	====> Epoch: 194, cost 19.63 s
2023-12-16 16:09:21,540	44k	INFO	====> Epoch: 195, cost 19.73 s
2023-12-16 16:09:41,099	44k	INFO	====> Epoch: 196, cost 19.56 s
2023-12-16 16:10:00,985	44k	INFO	====> Epoch: 197, cost 19.89 s
2023-12-16 16:10:20,790	44k	INFO	====> Epoch: 198, cost 19.80 s
2023-12-16 16:10:40,207	44k	INFO	====> Epoch: 199, cost 19.42 s
2023-12-16 16:10:59,326	44k	INFO	Train Epoch: 200 [93%]
2023-12-16 16:10:59,326	44k	INFO	Losses: [1.576963186264038, 3.343235492706299, 17.190486907958984, 32.088375091552734, 0.1742485910654068], step: 3000, lr: 9.754303167703689e-05, reference_loss: 54.37330627441406
2023-12-16 16:11:00,404	44k	INFO	====> Epoch: 200, cost 20.20 s
2023-12-16 16:11:19,904	44k	INFO	====> Epoch: 201, cost 19.50 s
2023-12-16 16:11:39,305	44k	INFO	====> Epoch: 202, cost 19.40 s
2023-12-16 16:11:58,686	44k	INFO	====> Epoch: 203, cost 19.38 s
2023-12-16 16:12:18,046	44k	INFO	====> Epoch: 204, cost 19.36 s
2023-12-16 16:12:37,564	44k	INFO	====> Epoch: 205, cost 19.52 s
2023-12-16 16:12:57,070	44k	INFO	====> Epoch: 206, cost 19.51 s
2023-12-16 16:13:16,485	44k	INFO	====> Epoch: 207, cost 19.42 s
2023-12-16 16:13:35,818	44k	INFO	====> Epoch: 208, cost 19.33 s
2023-12-16 16:13:55,344	44k	INFO	====> Epoch: 209, cost 19.53 s
2023-12-16 16:14:15,262	44k	INFO	====> Epoch: 210, cost 19.92 s
2023-12-16 16:14:34,633	44k	INFO	====> Epoch: 211, cost 19.37 s
2023-12-16 16:14:54,041	44k	INFO	====> Epoch: 212, cost 19.41 s
2023-12-16 16:15:13,420	44k	INFO	====> Epoch: 213, cost 19.38 s
2023-12-16 16:15:24,235	44k	INFO	Train Epoch: 214 [27%]
2023-12-16 16:15:24,235	44k	INFO	Losses: [2.163398265838623, 3.2876458168029785, 10.961349487304688, 25.006256103515625, 0.9355498552322388], step: 3200, lr: 9.7372469996277e-05, reference_loss: 42.35419845581055
2023-12-16 16:15:30,199	44k	INFO	Saving model and optimizer state at iteration 214 to ./logs\44k\G_3200.pth
2023-12-16 16:15:31,476	44k	INFO	Saving model and optimizer state at iteration 214 to ./logs\44k\D_3200.pth
2023-12-16 16:15:49,598	44k	INFO	====> Epoch: 214, cost 36.18 s
2023-12-16 16:16:09,069	44k	INFO	====> Epoch: 215, cost 19.47 s
2023-12-16 16:16:28,411	44k	INFO	====> Epoch: 216, cost 19.34 s
2023-12-16 16:16:48,057	44k	INFO	====> Epoch: 217, cost 19.65 s
2023-12-16 16:17:07,428	44k	INFO	====> Epoch: 218, cost 19.37 s
2023-12-16 16:17:26,827	44k	INFO	====> Epoch: 219, cost 19.40 s
2023-12-16 16:17:46,406	44k	INFO	====> Epoch: 220, cost 19.58 s
2023-12-16 16:18:05,807	44k	INFO	====> Epoch: 221, cost 19.40 s
2023-12-16 16:18:25,453	44k	INFO	====> Epoch: 222, cost 19.65 s
2023-12-16 16:18:44,787	44k	INFO	====> Epoch: 223, cost 19.33 s
2023-12-16 16:19:04,253	44k	INFO	====> Epoch: 224, cost 19.47 s
2023-12-16 16:19:23,868	44k	INFO	====> Epoch: 225, cost 19.62 s
2023-12-16 16:19:43,360	44k	INFO	====> Epoch: 226, cost 19.49 s
2023-12-16 16:19:58,621	44k	INFO	Train Epoch: 227 [60%]
2023-12-16 16:19:58,622	44k	INFO	Losses: [2.7509920597076416, 2.2684364318847656, 7.127928733825684, 20.45960807800293, 0.9491675496101379], step: 3400, lr: 9.721435835085619e-05, reference_loss: 33.55613327026367
2023-12-16 16:20:03,549	44k	INFO	====> Epoch: 227, cost 20.19 s
2023-12-16 16:20:23,108	44k	INFO	====> Epoch: 228, cost 19.56 s
2023-12-16 16:20:42,546	44k	INFO	====> Epoch: 229, cost 19.44 s
2023-12-16 16:21:02,189	44k	INFO	====> Epoch: 230, cost 19.64 s
2023-12-16 16:21:21,982	44k	INFO	====> Epoch: 231, cost 19.79 s
2023-12-16 16:21:41,737	44k	INFO	====> Epoch: 232, cost 19.76 s
2023-12-16 16:22:01,301	44k	INFO	====> Epoch: 233, cost 19.56 s
2023-12-16 16:22:20,962	44k	INFO	====> Epoch: 234, cost 19.66 s
2023-12-16 16:22:40,546	44k	INFO	====> Epoch: 235, cost 19.58 s
2023-12-16 16:23:00,092	44k	INFO	====> Epoch: 236, cost 19.55 s
2023-12-16 16:23:19,519	44k	INFO	====> Epoch: 237, cost 19.43 s
2023-12-16 16:23:39,107	44k	INFO	====> Epoch: 238, cost 19.59 s
2023-12-16 16:23:58,657	44k	INFO	====> Epoch: 239, cost 19.55 s
2023-12-16 16:24:17,465	44k	INFO	Train Epoch: 240 [93%]
2023-12-16 16:24:17,466	44k	INFO	Losses: [2.48555326461792, 2.4281094074249268, 10.029970169067383, 21.831945419311523, -0.0773247703909874], step: 3600, lr: 9.705650344424885e-05, reference_loss: 36.6982536315918
2023-12-16 16:24:18,582	44k	INFO	====> Epoch: 240, cost 19.93 s
2023-12-16 16:24:38,240	44k	INFO	====> Epoch: 241, cost 19.66 s
2023-12-16 16:24:57,803	44k	INFO	====> Epoch: 242, cost 19.56 s
2023-12-16 16:25:17,415	44k	INFO	====> Epoch: 243, cost 19.61 s
2023-12-16 16:25:37,013	44k	INFO	====> Epoch: 244, cost 19.60 s
2023-12-16 16:25:56,570	44k	INFO	====> Epoch: 245, cost 19.56 s
2023-12-16 16:26:16,368	44k	INFO	====> Epoch: 246, cost 19.80 s
2023-12-16 16:26:35,976	44k	INFO	====> Epoch: 247, cost 19.61 s
2023-12-16 16:26:55,725	44k	INFO	====> Epoch: 248, cost 19.75 s
2023-12-16 16:27:15,356	44k	INFO	====> Epoch: 249, cost 19.63 s
2023-12-16 16:27:35,031	44k	INFO	====> Epoch: 250, cost 19.68 s
2023-12-16 16:27:54,542	44k	INFO	====> Epoch: 251, cost 19.51 s
2023-12-16 16:28:14,175	44k	INFO	====> Epoch: 252, cost 19.63 s
2023-12-16 16:28:33,900	44k	INFO	====> Epoch: 253, cost 19.72 s
2023-12-16 16:28:45,281	44k	INFO	Train Epoch: 254 [27%]
2023-12-16 16:28:45,281	44k	INFO	Losses: [2.467670202255249, 2.504182815551758, 8.2728853225708, 21.709918975830078, 0.7850950360298157], step: 3800, lr: 9.68867924964598e-05, reference_loss: 35.73975372314453
2023-12-16 16:28:54,691	44k	INFO	====> Epoch: 254, cost 20.79 s
2023-12-16 16:29:14,839	44k	INFO	====> Epoch: 255, cost 20.15 s
2023-12-16 16:29:34,734	44k	INFO	====> Epoch: 256, cost 19.90 s
2023-12-16 16:29:54,253	44k	INFO	====> Epoch: 257, cost 19.52 s
2023-12-16 16:30:13,948	44k	INFO	====> Epoch: 258, cost 19.69 s
2023-12-16 16:30:34,427	44k	INFO	====> Epoch: 259, cost 20.48 s
2023-12-16 16:30:54,377	44k	INFO	====> Epoch: 260, cost 19.95 s
2023-12-16 16:31:14,088	44k	INFO	====> Epoch: 261, cost 19.71 s
2023-12-16 16:31:35,075	44k	INFO	====> Epoch: 262, cost 20.99 s
2023-12-16 16:31:55,725	44k	INFO	====> Epoch: 263, cost 20.65 s
2023-12-16 16:32:17,461	44k	INFO	====> Epoch: 264, cost 21.74 s
2023-12-16 16:32:39,360	44k	INFO	====> Epoch: 265, cost 21.90 s
2023-12-16 16:32:59,912	44k	INFO	====> Epoch: 266, cost 20.55 s
2023-12-16 16:33:17,787	44k	INFO	Train Epoch: 267 [60%]
2023-12-16 16:33:17,788	44k	INFO	Losses: [2.3996403217315674, 2.36592960357666, 4.848520755767822, 17.112092971801758, 0.5949386358261108], step: 4000, lr: 9.67294694853279e-05, reference_loss: 27.321121215820312
2023-12-16 16:33:24,788	44k	INFO	Saving model and optimizer state at iteration 267 to ./logs\44k\G_4000.pth
2023-12-16 16:33:26,480	44k	INFO	Saving model and optimizer state at iteration 267 to ./logs\44k\D_4000.pth
2023-12-16 16:33:36,216	44k	INFO	====> Epoch: 267, cost 36.30 s
2023-12-16 16:33:56,739	44k	INFO	====> Epoch: 268, cost 20.52 s
2023-12-16 16:34:17,676	44k	INFO	====> Epoch: 269, cost 20.94 s
2023-12-16 16:34:39,200	44k	INFO	====> Epoch: 270, cost 21.52 s
2023-12-16 16:35:00,391	44k	INFO	====> Epoch: 271, cost 21.19 s
2023-12-16 16:35:21,459	44k	INFO	====> Epoch: 272, cost 21.07 s
2023-12-16 16:35:43,592	44k	INFO	====> Epoch: 273, cost 22.13 s
2023-12-16 16:36:04,412	44k	INFO	====> Epoch: 274, cost 20.82 s
2023-12-16 16:36:26,054	44k	INFO	====> Epoch: 275, cost 21.64 s
2023-12-16 16:36:47,288	44k	INFO	====> Epoch: 276, cost 21.23 s
2023-12-16 16:37:08,113	44k	INFO	====> Epoch: 277, cost 20.82 s
2023-12-16 19:04:48,201	44k	INFO	{'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'wdlm': 0}, 'model_dir': './logs\\44k'}
2023-12-16 19:05:04,189	44k	INFO	Loaded checkpoint './logs\44k\G_4000.pth' (iteration 267)
2023-12-16 19:05:14,820	44k	INFO	Loaded checkpoint './logs\44k\D_4000.pth' (iteration 267)
2023-12-18 00:45:59,792	44k	INFO	{'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 10, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'wdlm': 0}, 'model_dir': './logs\\44k'}
2023-12-18 00:46:35,634	44k	INFO	Loaded checkpoint './logs\44k\G_4000.pth' (iteration 267)
2023-12-18 00:46:54,299	44k	INFO	Loaded checkpoint './logs\44k\D_4000.pth' (iteration 267)
2023-12-18 00:48:34,142	44k	INFO	====> Epoch: 267, cost 154.35 s
2023-12-18 00:48:53,267	44k	INFO	====> Epoch: 268, cost 19.12 s
2023-12-18 00:49:12,551	44k	INFO	====> Epoch: 269, cost 19.28 s
2023-12-18 00:49:31,680	44k	INFO	====> Epoch: 270, cost 19.13 s
2023-12-18 00:49:50,651	44k	INFO	====> Epoch: 271, cost 18.97 s
2023-12-18 00:50:09,505	44k	INFO	====> Epoch: 272, cost 18.85 s
2023-12-18 00:50:28,428	44k	INFO	====> Epoch: 273, cost 18.92 s
2023-12-18 00:50:47,761	44k	INFO	====> Epoch: 274, cost 19.33 s
2023-12-18 00:51:11,246	44k	INFO	====> Epoch: 275, cost 23.48 s
2023-12-18 00:51:30,823	44k	INFO	====> Epoch: 276, cost 19.58 s
2023-12-18 00:51:50,723	44k	INFO	====> Epoch: 277, cost 19.90 s
2023-12-18 00:52:10,645	44k	INFO	====> Epoch: 278, cost 19.92 s
2023-12-18 00:52:30,473	44k	INFO	====> Epoch: 279, cost 19.83 s
2023-12-18 00:52:41,059	44k	INFO	Train Epoch: 280 [27%]
2023-12-18 00:52:41,059	44k	INFO	Losses: [2.4351158142089844, 2.1838958263397217, 9.900190353393555, 21.247800827026367, 1.0966874361038208], step: 4200, lr: 9.65482603409002e-05, reference_loss: 36.86368942260742
2023-12-18 00:52:51,136	44k	INFO	====> Epoch: 280, cost 20.66 s
2023-12-18 00:53:10,723	44k	INFO	====> Epoch: 281, cost 19.59 s
2023-12-18 00:53:30,481	44k	INFO	====> Epoch: 282, cost 19.76 s
2023-12-18 00:53:50,416	44k	INFO	====> Epoch: 283, cost 19.94 s
2023-12-18 00:54:10,522	44k	INFO	====> Epoch: 284, cost 20.11 s
2023-12-18 00:54:30,201	44k	INFO	====> Epoch: 285, cost 19.68 s
2023-12-18 00:54:50,054	44k	INFO	====> Epoch: 286, cost 19.85 s
2023-12-18 00:55:09,939	44k	INFO	====> Epoch: 287, cost 19.89 s
2023-12-18 00:55:29,714	44k	INFO	====> Epoch: 288, cost 19.77 s
2023-12-18 00:55:49,604	44k	INFO	====> Epoch: 289, cost 19.89 s
2023-12-18 00:56:09,384	44k	INFO	====> Epoch: 290, cost 19.78 s
2023-12-18 00:56:29,295	44k	INFO	====> Epoch: 291, cost 19.91 s
2023-12-18 00:56:49,019	44k	INFO	====> Epoch: 292, cost 19.72 s
2023-12-18 00:57:03,857	44k	INFO	Train Epoch: 293 [60%]
2023-12-18 00:57:03,857	44k	INFO	Losses: [2.3994483947753906, 2.495651960372925, 10.407428741455078, 21.881799697875977, 0.7986530661582947], step: 4400, lr: 9.639148703212408e-05, reference_loss: 37.98298263549805
2023-12-18 00:57:09,169	44k	INFO	====> Epoch: 293, cost 20.15 s
2023-12-18 00:57:28,997	44k	INFO	====> Epoch: 294, cost 19.83 s
2023-12-18 00:57:48,787	44k	INFO	====> Epoch: 295, cost 19.79 s
2023-12-18 00:58:08,528	44k	INFO	====> Epoch: 296, cost 19.74 s
2023-12-18 00:58:28,515	44k	INFO	====> Epoch: 297, cost 19.99 s
2023-12-18 00:58:48,419	44k	INFO	====> Epoch: 298, cost 19.90 s
2023-12-18 00:59:08,353	44k	INFO	====> Epoch: 299, cost 19.93 s
2023-12-18 00:59:27,970	44k	INFO	====> Epoch: 300, cost 19.62 s
2023-12-18 01:00:12,275	44k	INFO	====> Epoch: 301, cost 44.31 s
2023-12-18 02:00:18,227	44k	INFO	{'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 10, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'wdlm': 0}, 'model_dir': './logs\\44k'}
2023-12-18 02:05:54,785	44k	INFO	{'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 4, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 10, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'wdlm': 0}, 'model_dir': './logs\\44k'}
2023-12-18 02:08:41,510	44k	INFO	Loaded checkpoint './logs\44k\G_4000.pth' (iteration 267)
2023-12-18 02:08:52,614	44k	INFO	Loaded checkpoint './logs\44k\D_4000.pth' (iteration 267)
2023-12-18 02:09:30,741	44k	INFO	====> Epoch: 267, cost 215.96 s
2023-12-18 02:09:46,518	44k	INFO	====> Epoch: 268, cost 15.78 s
2023-12-18 02:10:02,505	44k	INFO	====> Epoch: 269, cost 15.99 s
2023-12-18 02:10:18,581	44k	INFO	====> Epoch: 270, cost 16.08 s
2023-12-18 02:10:34,547	44k	INFO	====> Epoch: 271, cost 15.97 s
2023-12-18 02:10:50,587	44k	INFO	====> Epoch: 272, cost 16.04 s
2023-12-18 02:11:06,655	44k	INFO	====> Epoch: 273, cost 16.07 s
2023-12-18 02:11:22,763	44k	INFO	====> Epoch: 274, cost 16.11 s
2023-12-18 02:11:39,154	44k	INFO	====> Epoch: 275, cost 16.39 s
2023-12-18 02:11:55,540	44k	INFO	====> Epoch: 276, cost 16.39 s
2023-12-18 02:12:11,953	44k	INFO	====> Epoch: 277, cost 16.41 s
2023-12-18 02:12:28,143	44k	INFO	====> Epoch: 278, cost 16.19 s
2023-12-18 02:12:44,336	44k	INFO	====> Epoch: 279, cost 16.19 s
2023-12-18 02:12:54,121	44k	INFO	Train Epoch: 280 [27%]
2023-12-18 02:12:54,121	44k	INFO	Losses: [2.4663281440734863, 2.9571053981781006, 10.239912986755371, 23.176321029663086, 0.9816058278083801], step: 4200, lr: 9.65482603409002e-05, reference_loss: 39.82127380371094
2023-12-18 02:13:01,891	44k	INFO	====> Epoch: 280, cost 17.56 s
2023-12-18 02:13:18,193	44k	INFO	====> Epoch: 281, cost 16.30 s
2023-12-18 02:13:34,582	44k	INFO	====> Epoch: 282, cost 16.39 s
2023-12-18 02:13:51,082	44k	INFO	====> Epoch: 283, cost 16.50 s
2023-12-18 02:14:07,469	44k	INFO	====> Epoch: 284, cost 16.39 s
2023-12-18 02:14:23,972	44k	INFO	====> Epoch: 285, cost 16.50 s
2023-12-18 02:14:40,360	44k	INFO	====> Epoch: 286, cost 16.39 s
2023-12-18 02:14:56,796	44k	INFO	====> Epoch: 287, cost 16.44 s
2023-12-18 02:15:13,577	44k	INFO	====> Epoch: 288, cost 16.78 s
2023-12-18 02:15:30,124	44k	INFO	====> Epoch: 289, cost 16.55 s
2023-12-18 02:15:46,510	44k	INFO	====> Epoch: 290, cost 16.39 s
2023-12-18 02:16:03,027	44k	INFO	====> Epoch: 291, cost 16.52 s
2023-12-18 02:16:19,575	44k	INFO	====> Epoch: 292, cost 16.55 s
2023-12-18 02:16:32,430	44k	INFO	Train Epoch: 293 [60%]
2023-12-18 02:16:32,430	44k	INFO	Losses: [2.667595863342285, 2.330214500427246, 6.057078838348389, 18.593589782714844, 1.3511298894882202], step: 4400, lr: 9.639148703212408e-05, reference_loss: 30.999608993530273
2023-12-18 02:16:36,543	44k	INFO	====> Epoch: 293, cost 16.97 s
2023-12-18 02:16:52,842	44k	INFO	====> Epoch: 294, cost 16.30 s
2023-12-18 02:17:09,176	44k	INFO	====> Epoch: 295, cost 16.33 s
2023-12-18 02:17:25,514	44k	INFO	====> Epoch: 296, cost 16.34 s
2023-12-18 02:17:41,947	44k	INFO	====> Epoch: 297, cost 16.43 s
2023-12-18 02:17:58,412	44k	INFO	====> Epoch: 298, cost 16.47 s
2023-12-18 02:18:14,915	44k	INFO	====> Epoch: 299, cost 16.50 s
2023-12-18 02:18:31,340	44k	INFO	====> Epoch: 300, cost 16.42 s
2023-12-18 02:18:47,846	44k	INFO	====> Epoch: 301, cost 16.51 s
2023-12-18 02:19:04,382	44k	INFO	====> Epoch: 302, cost 16.54 s
2023-12-18 02:19:20,685	44k	INFO	====> Epoch: 303, cost 16.30 s
2023-12-18 02:19:37,054	44k	INFO	====> Epoch: 304, cost 16.37 s
2023-12-18 02:19:53,540	44k	INFO	====> Epoch: 305, cost 16.49 s
2023-12-18 02:20:09,324	44k	INFO	Train Epoch: 306 [93%]
2023-12-18 02:20:09,324	44k	INFO	Losses: [2.795588493347168, 2.8995909690856934, 10.883658409118652, 20.771377563476562, 0.9570157527923584], step: 4600, lr: 9.62349682889948e-05, reference_loss: 38.30723190307617
2023-12-18 02:20:10,371	44k	INFO	====> Epoch: 306, cost 16.83 s
2023-12-18 02:20:26,942	44k	INFO	====> Epoch: 307, cost 16.57 s
2023-12-18 02:20:43,349	44k	INFO	====> Epoch: 308, cost 16.41 s
2023-12-18 02:20:59,629	44k	INFO	====> Epoch: 309, cost 16.28 s
2023-12-18 02:21:15,881	44k	INFO	====> Epoch: 310, cost 16.25 s
2023-12-18 02:21:32,404	44k	INFO	====> Epoch: 311, cost 16.52 s
2023-12-18 02:21:48,810	44k	INFO	====> Epoch: 312, cost 16.41 s
2023-12-18 02:22:05,302	44k	INFO	====> Epoch: 313, cost 16.49 s
2023-12-18 02:22:21,683	44k	INFO	====> Epoch: 314, cost 16.38 s
2023-12-18 02:22:38,067	44k	INFO	====> Epoch: 315, cost 16.38 s
2023-12-18 02:22:54,438	44k	INFO	====> Epoch: 316, cost 16.37 s
2023-12-18 02:23:10,781	44k	INFO	====> Epoch: 317, cost 16.34 s
2023-12-18 02:23:27,078	44k	INFO	====> Epoch: 318, cost 16.30 s
2023-12-18 02:23:43,579	44k	INFO	====> Epoch: 319, cost 16.50 s
2023-12-18 02:23:53,346	44k	INFO	Train Epoch: 320 [27%]
2023-12-18 02:23:53,346	44k	INFO	Losses: [2.7768359184265137, 2.3091416358947754, 7.972097873687744, 21.824607849121094, 0.5270208716392517], step: 4800, lr: 9.606669386019102e-05, reference_loss: 35.40970230102539
2023-12-18 02:24:01,008	44k	INFO	Saving model and optimizer state at iteration 320 to ./logs\44k\G_4800.pth
2023-12-18 02:24:02,138	44k	INFO	Saving model and optimizer state at iteration 320 to ./logs\44k\D_4800.pth
2023-12-18 02:24:19,670	44k	INFO	====> Epoch: 320, cost 36.09 s
2023-12-18 02:24:36,052	44k	INFO	====> Epoch: 321, cost 16.38 s
2023-12-18 02:24:52,551	44k	INFO	====> Epoch: 322, cost 16.50 s
2023-12-18 02:25:08,751	44k	INFO	====> Epoch: 323, cost 16.20 s
2023-12-18 02:25:25,097	44k	INFO	====> Epoch: 324, cost 16.35 s
2023-12-18 02:25:41,471	44k	INFO	====> Epoch: 325, cost 16.37 s
2023-12-18 02:25:57,762	44k	INFO	====> Epoch: 326, cost 16.29 s
2023-12-18 02:26:14,118	44k	INFO	====> Epoch: 327, cost 16.36 s
2023-12-18 02:26:30,463	44k	INFO	====> Epoch: 328, cost 16.35 s
2023-12-18 02:26:46,820	44k	INFO	====> Epoch: 329, cost 16.36 s
2023-12-18 02:27:03,103	44k	INFO	====> Epoch: 330, cost 16.28 s
2023-12-18 02:27:19,370	44k	INFO	====> Epoch: 331, cost 16.27 s
2023-12-18 02:27:35,721	44k	INFO	====> Epoch: 332, cost 16.35 s
2023-12-18 02:27:48,479	44k	INFO	Train Epoch: 333 [60%]
2023-12-18 02:27:48,479	44k	INFO	Losses: [2.273578643798828, 2.649947166442871, 12.30436897277832, 27.678691864013672, 0.6731786131858826], step: 5000, lr: 9.591070251030582e-05, reference_loss: 45.57976531982422
2023-12-18 02:27:52,571	44k	INFO	====> Epoch: 333, cost 16.85 s
2023-12-18 02:28:08,901	44k	INFO	====> Epoch: 334, cost 16.33 s
2023-12-18 02:28:25,101	44k	INFO	====> Epoch: 335, cost 16.20 s
2023-12-18 02:28:41,250	44k	INFO	====> Epoch: 336, cost 16.15 s
2023-12-18 02:28:57,537	44k	INFO	====> Epoch: 337, cost 16.29 s
2023-12-18 02:29:13,658	44k	INFO	====> Epoch: 338, cost 16.12 s
2023-12-18 02:29:29,851	44k	INFO	====> Epoch: 339, cost 16.19 s
2023-12-18 02:29:46,124	44k	INFO	====> Epoch: 340, cost 16.27 s
2023-12-18 02:30:02,446	44k	INFO	====> Epoch: 341, cost 16.32 s
2023-12-18 02:30:18,962	44k	INFO	====> Epoch: 342, cost 16.52 s
2023-12-18 02:30:35,484	44k	INFO	====> Epoch: 343, cost 16.52 s
2023-12-18 02:30:51,698	44k	INFO	====> Epoch: 344, cost 16.21 s
2023-12-18 02:31:08,049	44k	INFO	====> Epoch: 345, cost 16.35 s
2023-12-18 02:31:23,702	44k	INFO	Train Epoch: 346 [93%]
2023-12-18 02:31:23,702	44k	INFO	Losses: [2.3827779293060303, 2.7761096954345703, 6.374064922332764, 24.456802368164062, -0.039804231375455856], step: 5200, lr: 9.575496445633683e-05, reference_loss: 35.949951171875
2023-12-18 02:31:24,774	44k	INFO	====> Epoch: 346, cost 16.72 s
2023-12-18 02:31:41,156	44k	INFO	====> Epoch: 347, cost 16.38 s
2023-12-18 02:31:57,510	44k	INFO	====> Epoch: 348, cost 16.35 s
2023-12-18 02:32:13,840	44k	INFO	====> Epoch: 349, cost 16.33 s
2023-12-18 02:32:30,116	44k	INFO	====> Epoch: 350, cost 16.28 s
2023-12-18 02:32:46,417	44k	INFO	====> Epoch: 351, cost 16.30 s
2023-12-18 02:33:02,639	44k	INFO	====> Epoch: 352, cost 16.22 s
2023-12-18 02:33:19,044	44k	INFO	====> Epoch: 353, cost 16.40 s
2023-12-18 02:33:35,377	44k	INFO	====> Epoch: 354, cost 16.33 s
2023-12-18 02:33:51,715	44k	INFO	====> Epoch: 355, cost 16.34 s
2023-12-18 02:34:07,986	44k	INFO	====> Epoch: 356, cost 16.27 s
2023-12-18 02:34:24,495	44k	INFO	====> Epoch: 357, cost 16.51 s
2023-12-18 02:34:40,766	44k	INFO	====> Epoch: 358, cost 16.27 s
2023-12-18 02:34:56,935	44k	INFO	====> Epoch: 359, cost 16.17 s
2023-12-18 02:35:06,532	44k	INFO	Train Epoch: 360 [27%]
2023-12-18 02:35:06,532	44k	INFO	Losses: [2.7126941680908203, 2.2726285457611084, 7.150015354156494, 19.460657119750977, 0.37591493129730225], step: 5400, lr: 9.558752935207586e-05, reference_loss: 31.97191047668457
2023-12-18 02:35:13,924	44k	INFO	====> Epoch: 360, cost 16.99 s
2023-12-18 02:35:30,103	44k	INFO	====> Epoch: 361, cost 16.18 s
2023-12-18 02:35:46,427	44k	INFO	====> Epoch: 362, cost 16.32 s
2023-12-18 02:36:02,809	44k	INFO	====> Epoch: 363, cost 16.38 s
2023-12-18 02:36:19,221	44k	INFO	====> Epoch: 364, cost 16.41 s
2023-12-18 02:36:35,556	44k	INFO	====> Epoch: 365, cost 16.33 s
2023-12-18 02:36:51,787	44k	INFO	====> Epoch: 366, cost 16.23 s
2023-12-18 02:37:08,253	44k	INFO	====> Epoch: 367, cost 16.47 s
2023-12-18 02:37:24,532	44k	INFO	====> Epoch: 368, cost 16.28 s
2023-12-18 02:37:40,672	44k	INFO	====> Epoch: 369, cost 16.14 s
2023-12-18 02:37:57,214	44k	INFO	====> Epoch: 370, cost 16.54 s
2023-12-18 02:38:13,543	44k	INFO	====> Epoch: 371, cost 16.33 s
2023-12-18 02:38:29,952	44k	INFO	====> Epoch: 372, cost 16.41 s
2023-12-18 02:38:42,805	44k	INFO	Train Epoch: 373 [60%]
2023-12-18 02:38:42,805	44k	INFO	Losses: [2.1800777912139893, 3.0790042877197266, 10.158679008483887, 23.722606658935547, 1.0680791139602661], step: 5600, lr: 9.543231606080218e-05, reference_loss: 40.20844650268555
2023-12-18 02:38:48,100	44k	INFO	Saving model and optimizer state at iteration 373 to ./logs\44k\G_5600.pth
2023-12-18 02:38:49,324	44k	INFO	Saving model and optimizer state at iteration 373 to ./logs\44k\D_5600.pth
2023-12-18 02:38:58,448	44k	INFO	====> Epoch: 373, cost 28.50 s
2023-12-18 02:39:14,761	44k	INFO	====> Epoch: 374, cost 16.31 s
2023-12-18 02:39:31,321	44k	INFO	====> Epoch: 375, cost 16.56 s
2023-12-18 02:39:47,720	44k	INFO	====> Epoch: 376, cost 16.40 s
2023-12-18 02:40:04,286	44k	INFO	====> Epoch: 377, cost 16.57 s
2023-12-18 02:40:20,562	44k	INFO	====> Epoch: 378, cost 16.28 s
2023-12-18 02:40:36,985	44k	INFO	====> Epoch: 379, cost 16.42 s
2023-12-18 02:40:53,247	44k	INFO	====> Epoch: 380, cost 16.26 s
2023-12-18 02:41:09,529	44k	INFO	====> Epoch: 381, cost 16.28 s
2023-12-18 02:41:25,823	44k	INFO	====> Epoch: 382, cost 16.29 s
2023-12-18 02:41:42,042	44k	INFO	====> Epoch: 383, cost 16.22 s
2023-12-18 02:41:58,287	44k	INFO	====> Epoch: 384, cost 16.24 s
2023-12-18 02:42:14,527	44k	INFO	====> Epoch: 385, cost 16.24 s
2023-12-18 02:42:30,462	44k	INFO	Train Epoch: 386 [93%]
2023-12-18 02:42:30,462	44k	INFO	Losses: [1.64399254322052, 3.2245638370513916, 14.835515022277832, 31.363067626953125, 0.4534532427787781], step: 5800, lr: 9.527735480204728e-05, reference_loss: 51.520591735839844
2023-12-18 02:42:31,481	44k	INFO	====> Epoch: 386, cost 16.94 s
2023-12-18 02:42:47,839	44k	INFO	====> Epoch: 387, cost 16.37 s
2023-12-18 02:43:04,234	44k	INFO	====> Epoch: 388, cost 16.40 s
2023-12-18 02:43:20,388	44k	INFO	====> Epoch: 389, cost 16.15 s
2023-12-18 02:43:36,732	44k	INFO	====> Epoch: 390, cost 16.34 s
2023-12-18 02:43:52,937	44k	INFO	====> Epoch: 391, cost 16.21 s
2023-12-18 02:44:09,217	44k	INFO	====> Epoch: 392, cost 16.28 s
2023-12-18 02:44:25,565	44k	INFO	====> Epoch: 393, cost 16.35 s
2023-12-18 02:44:41,848	44k	INFO	====> Epoch: 394, cost 16.28 s
2023-12-18 02:44:58,138	44k	INFO	====> Epoch: 395, cost 16.29 s
2023-12-18 02:45:14,472	44k	INFO	====> Epoch: 396, cost 16.33 s
2023-12-18 02:45:31,018	44k	INFO	====> Epoch: 397, cost 16.55 s
2023-12-18 02:45:47,313	44k	INFO	====> Epoch: 398, cost 16.30 s
2023-12-18 02:46:03,625	44k	INFO	====> Epoch: 399, cost 16.31 s
2023-12-18 02:46:13,149	44k	INFO	Train Epoch: 400 [27%]
2023-12-18 02:46:13,149	44k	INFO	Losses: [2.2236180305480957, 2.5851387977600098, 9.906683921813965, 22.398427963256836, 0.3596521317958832], step: 6000, lr: 9.511075483591955e-05, reference_loss: 37.4735221862793
2023-12-18 02:46:20,507	44k	INFO	====> Epoch: 400, cost 16.88 s
2023-12-18 02:46:36,797	44k	INFO	====> Epoch: 401, cost 16.29 s
2023-12-18 02:46:53,006	44k	INFO	====> Epoch: 402, cost 16.21 s
2023-12-18 02:47:09,275	44k	INFO	====> Epoch: 403, cost 16.27 s
2023-12-18 02:47:25,528	44k	INFO	====> Epoch: 404, cost 16.25 s
2023-12-18 02:47:41,778	44k	INFO	====> Epoch: 405, cost 16.25 s
2023-12-18 02:47:58,039	44k	INFO	====> Epoch: 406, cost 16.26 s
2023-12-18 02:48:14,312	44k	INFO	====> Epoch: 407, cost 16.27 s
2023-12-18 02:48:30,485	44k	INFO	====> Epoch: 408, cost 16.17 s
2023-12-18 02:48:46,733	44k	INFO	====> Epoch: 409, cost 16.25 s
2023-12-18 02:49:03,152	44k	INFO	====> Epoch: 410, cost 16.42 s
2023-12-18 02:49:19,471	44k	INFO	====> Epoch: 411, cost 16.32 s
2023-12-18 02:49:35,690	44k	INFO	====> Epoch: 412, cost 16.22 s
2023-12-18 02:49:48,472	44k	INFO	Train Epoch: 413 [60%]
2023-12-18 02:49:48,472	44k	INFO	Losses: [2.440399408340454, 2.545651912689209, 8.020552635192871, 21.467039108276367, 0.9791371822357178], step: 6200, lr: 9.495631572243191e-05, reference_loss: 35.452781677246094
2023-12-18 02:49:52,547	44k	INFO	====> Epoch: 413, cost 16.86 s
2023-12-18 02:50:08,745	44k	INFO	====> Epoch: 414, cost 16.20 s
2023-12-18 02:50:24,928	44k	INFO	====> Epoch: 415, cost 16.18 s
2023-12-18 02:50:41,057	44k	INFO	====> Epoch: 416, cost 16.13 s
2023-12-18 02:50:57,282	44k	INFO	====> Epoch: 417, cost 16.22 s
2023-12-18 02:51:13,531	44k	INFO	====> Epoch: 418, cost 16.25 s
2023-12-18 02:51:29,739	44k	INFO	====> Epoch: 419, cost 16.21 s
2023-12-18 02:51:46,038	44k	INFO	====> Epoch: 420, cost 16.30 s
2023-12-18 02:52:02,203	44k	INFO	====> Epoch: 421, cost 16.16 s
2023-12-18 02:52:18,412	44k	INFO	====> Epoch: 422, cost 16.21 s
2023-12-18 02:52:34,659	44k	INFO	====> Epoch: 423, cost 16.25 s
2023-12-18 02:52:50,736	44k	INFO	====> Epoch: 424, cost 16.08 s
2023-12-18 02:53:06,824	44k	INFO	====> Epoch: 425, cost 16.09 s
2023-12-18 02:53:22,414	44k	INFO	Train Epoch: 426 [93%]
2023-12-18 02:53:22,414	44k	INFO	Losses: [2.115166187286377, 2.556946277618408, 13.124458312988281, 27.000316619873047, 0.6712955832481384], step: 6400, lr: 9.480212738436729e-05, reference_loss: 45.46818161010742
2023-12-18 02:53:27,768	44k	INFO	Saving model and optimizer state at iteration 426 to ./logs\44k\G_6400.pth
2023-12-18 02:53:28,966	44k	INFO	Saving model and optimizer state at iteration 426 to ./logs\44k\D_6400.pth
2023-12-18 02:53:38,147	44k	INFO	====> Epoch: 426, cost 31.32 s
2023-12-18 02:53:54,776	44k	INFO	====> Epoch: 427, cost 16.63 s
2023-12-18 02:54:11,007	44k	INFO	====> Epoch: 428, cost 16.23 s
2023-12-18 02:54:27,589	44k	INFO	====> Epoch: 429, cost 16.58 s
2023-12-18 02:54:43,860	44k	INFO	====> Epoch: 430, cost 16.27 s
2023-12-18 02:54:59,990	44k	INFO	====> Epoch: 431, cost 16.13 s
2023-12-18 02:55:16,108	44k	INFO	====> Epoch: 432, cost 16.12 s
2023-12-18 02:55:32,342	44k	INFO	====> Epoch: 433, cost 16.23 s
2023-12-18 02:55:48,464	44k	INFO	====> Epoch: 434, cost 16.12 s
2023-12-18 02:56:04,714	44k	INFO	====> Epoch: 435, cost 16.25 s
2023-12-18 02:56:20,863	44k	INFO	====> Epoch: 436, cost 16.15 s
2023-12-18 02:56:37,321	44k	INFO	====> Epoch: 437, cost 16.46 s
2023-12-18 02:56:53,531	44k	INFO	====> Epoch: 438, cost 16.21 s
2023-12-18 02:57:09,676	44k	INFO	====> Epoch: 439, cost 16.14 s
2023-12-18 02:57:19,261	44k	INFO	Train Epoch: 440 [27%]
2023-12-18 02:57:19,261	44k	INFO	Losses: [2.4228711128234863, 2.587799549102783, 7.584394454956055, 21.408559799194336, 0.8824259042739868], step: 6600, lr: 9.463635839084426e-05, reference_loss: 34.886051177978516
2023-12-18 02:57:26,676	44k	INFO	====> Epoch: 440, cost 17.00 s
2023-12-18 02:57:42,881	44k	INFO	====> Epoch: 441, cost 16.20 s
2023-12-18 02:57:59,165	44k	INFO	====> Epoch: 442, cost 16.28 s
2023-12-18 02:58:15,280	44k	INFO	====> Epoch: 443, cost 16.11 s
2023-12-18 02:58:31,512	44k	INFO	====> Epoch: 444, cost 16.23 s
2023-12-18 02:58:47,920	44k	INFO	====> Epoch: 445, cost 16.41 s
2023-12-18 02:59:04,009	44k	INFO	====> Epoch: 446, cost 16.09 s
2023-12-18 02:59:20,292	44k	INFO	====> Epoch: 447, cost 16.28 s
2023-12-18 02:59:36,415	44k	INFO	====> Epoch: 448, cost 16.12 s
2023-12-18 02:59:52,867	44k	INFO	====> Epoch: 449, cost 16.45 s
2023-12-18 03:00:09,080	44k	INFO	====> Epoch: 450, cost 16.21 s
2023-12-18 03:00:25,942	44k	INFO	====> Epoch: 451, cost 16.86 s
2023-12-18 03:00:42,177	44k	INFO	====> Epoch: 452, cost 16.23 s
2023-12-18 03:00:54,963	44k	INFO	Train Epoch: 453 [60%]
2023-12-18 03:00:54,963	44k	INFO	Losses: [2.2092530727386475, 2.8768882751464844, 10.324399948120117, 21.902294158935547, 0.6800149083137512], step: 6800, lr: 9.448268959367411e-05, reference_loss: 37.99285125732422
2023-12-18 03:00:59,073	44k	INFO	====> Epoch: 453, cost 16.90 s
2023-12-18 03:01:15,284	44k	INFO	====> Epoch: 454, cost 16.21 s
2023-12-18 03:01:31,425	44k	INFO	====> Epoch: 455, cost 16.14 s
2023-12-18 03:01:47,850	44k	INFO	====> Epoch: 456, cost 16.42 s
2023-12-18 03:02:04,043	44k	INFO	====> Epoch: 457, cost 16.19 s
2023-12-18 03:02:20,122	44k	INFO	====> Epoch: 458, cost 16.08 s
2023-12-18 03:02:36,475	44k	INFO	====> Epoch: 459, cost 16.35 s
2023-12-18 03:02:53,057	44k	INFO	====> Epoch: 460, cost 16.58 s
2023-12-18 03:03:09,345	44k	INFO	====> Epoch: 461, cost 16.29 s
2023-12-18 03:03:25,607	44k	INFO	====> Epoch: 462, cost 16.26 s
2023-12-18 03:03:42,077	44k	INFO	====> Epoch: 463, cost 16.47 s
2023-12-18 03:03:58,332	44k	INFO	====> Epoch: 464, cost 16.26 s
2023-12-18 03:04:14,591	44k	INFO	====> Epoch: 465, cost 16.26 s
2023-12-18 03:04:30,309	44k	INFO	Train Epoch: 466 [93%]
2023-12-18 03:04:30,309	44k	INFO	Losses: [2.9419851303100586, 1.9626998901367188, 1.2887744903564453, 12.46977710723877, 0.17783141136169434], step: 7000, lr: 9.432927032110133e-05, reference_loss: 18.841068267822266
2023-12-18 03:04:31,338	44k	INFO	====> Epoch: 466, cost 16.75 s
2023-12-18 03:04:47,605	44k	INFO	====> Epoch: 467, cost 16.27 s
2023-12-18 03:05:04,070	44k	INFO	====> Epoch: 468, cost 16.47 s
2023-12-18 03:05:20,380	44k	INFO	====> Epoch: 469, cost 16.31 s
2023-12-18 03:05:36,740	44k	INFO	====> Epoch: 470, cost 16.36 s
2023-12-18 03:05:52,944	44k	INFO	====> Epoch: 471, cost 16.20 s
2023-12-18 03:06:09,118	44k	INFO	====> Epoch: 472, cost 16.17 s
2023-12-18 03:06:25,516	44k	INFO	====> Epoch: 473, cost 16.40 s
2023-12-18 03:06:41,720	44k	INFO	====> Epoch: 474, cost 16.20 s
2023-12-18 03:06:57,853	44k	INFO	====> Epoch: 475, cost 16.13 s
2023-12-18 03:07:14,131	44k	INFO	====> Epoch: 476, cost 16.28 s
2023-12-18 03:07:30,672	44k	INFO	====> Epoch: 477, cost 16.54 s
2023-12-18 03:07:46,904	44k	INFO	====> Epoch: 478, cost 16.23 s
2023-12-18 03:08:03,386	44k	INFO	====> Epoch: 479, cost 16.48 s
2023-12-18 03:08:13,369	44k	INFO	Train Epoch: 480 [27%]
2023-12-18 03:08:13,369	44k	INFO	Losses: [2.371331214904785, 2.164797067642212, 10.70827865600586, 23.26729393005371, 0.7630030512809753], step: 7200, lr: 9.416432815543143e-05, reference_loss: 39.27470397949219
2023-12-18 03:08:18,722	44k	INFO	Saving model and optimizer state at iteration 480 to ./logs\44k\G_7200.pth
2023-12-18 03:08:19,872	44k	INFO	Saving model and optimizer state at iteration 480 to ./logs\44k\D_7200.pth
2023-12-18 03:08:32,657	44k	INFO	====> Epoch: 480, cost 29.27 s
2023-12-18 03:08:49,069	44k	INFO	====> Epoch: 481, cost 16.41 s
2023-12-18 03:09:05,633	44k	INFO	====> Epoch: 482, cost 16.56 s
2023-12-18 03:09:21,776	44k	INFO	====> Epoch: 483, cost 16.14 s
2023-12-18 03:09:38,020	44k	INFO	====> Epoch: 484, cost 16.24 s
2023-12-18 03:09:54,544	44k	INFO	====> Epoch: 485, cost 16.52 s
2023-12-18 03:10:11,138	44k	INFO	====> Epoch: 486, cost 16.59 s
2023-12-18 03:10:27,528	44k	INFO	====> Epoch: 487, cost 16.39 s
2023-12-18 03:10:43,799	44k	INFO	====> Epoch: 488, cost 16.27 s
2023-12-18 03:11:00,218	44k	INFO	====> Epoch: 489, cost 16.42 s
2023-12-18 03:11:16,761	44k	INFO	====> Epoch: 490, cost 16.54 s
2023-12-18 03:11:33,054	44k	INFO	====> Epoch: 491, cost 16.29 s
2023-12-18 03:11:49,258	44k	INFO	====> Epoch: 492, cost 16.20 s
2023-12-18 03:12:02,043	44k	INFO	Train Epoch: 493 [60%]
2023-12-18 03:12:02,043	44k	INFO	Losses: [2.5731394290924072, 2.0920982360839844, 8.718671798706055, 23.59229278564453, 0.7969865202903748], step: 7400, lr: 9.401142583237059e-05, reference_loss: 37.773189544677734
2023-12-18 03:12:06,167	44k	INFO	====> Epoch: 493, cost 16.91 s
2023-12-18 03:12:22,432	44k	INFO	====> Epoch: 494, cost 16.27 s
2023-12-18 03:12:38,628	44k	INFO	====> Epoch: 495, cost 16.20 s
2023-12-18 03:12:54,618	44k	INFO	====> Epoch: 496, cost 15.99 s
2023-12-18 03:13:10,799	44k	INFO	====> Epoch: 497, cost 16.18 s
2023-12-18 03:13:27,104	44k	INFO	====> Epoch: 498, cost 16.31 s
2023-12-18 03:13:43,419	44k	INFO	====> Epoch: 499, cost 16.31 s
2023-12-18 03:13:59,683	44k	INFO	====> Epoch: 500, cost 16.26 s
2023-12-18 03:14:16,015	44k	INFO	====> Epoch: 501, cost 16.33 s
2023-12-18 03:14:32,282	44k	INFO	====> Epoch: 502, cost 16.27 s
2023-12-18 03:14:48,776	44k	INFO	====> Epoch: 503, cost 16.49 s
2023-12-18 03:15:04,986	44k	INFO	====> Epoch: 504, cost 16.21 s
2023-12-18 03:15:21,572	44k	INFO	====> Epoch: 505, cost 16.59 s
2023-12-18 03:15:37,166	44k	INFO	Train Epoch: 506 [93%]
2023-12-18 03:15:37,166	44k	INFO	Losses: [2.1747968196868896, 2.423266649246216, 9.536327362060547, 23.640836715698242, 1.4842207431793213], step: 7600, lr: 9.385877178932038e-05, reference_loss: 39.25944900512695
2023-12-18 03:15:38,190	44k	INFO	====> Epoch: 506, cost 16.62 s
2023-12-18 03:15:54,543	44k	INFO	====> Epoch: 507, cost 16.35 s
2023-12-18 03:16:10,721	44k	INFO	====> Epoch: 508, cost 16.18 s
2023-12-18 03:16:27,035	44k	INFO	====> Epoch: 509, cost 16.31 s
2023-12-18 03:16:43,354	44k	INFO	====> Epoch: 510, cost 16.32 s
2023-12-18 03:16:59,521	44k	INFO	====> Epoch: 511, cost 16.17 s
2023-12-18 03:17:15,776	44k	INFO	====> Epoch: 512, cost 16.25 s
2023-12-18 03:17:32,108	44k	INFO	====> Epoch: 513, cost 16.33 s
2023-12-18 03:17:48,422	44k	INFO	====> Epoch: 514, cost 16.31 s
2023-12-18 03:18:04,653	44k	INFO	====> Epoch: 515, cost 16.23 s
2023-12-18 03:18:20,890	44k	INFO	====> Epoch: 516, cost 16.24 s
2023-12-18 03:18:37,130	44k	INFO	====> Epoch: 517, cost 16.24 s
2023-12-18 03:18:53,257	44k	INFO	====> Epoch: 518, cost 16.13 s
2023-12-18 03:19:09,542	44k	INFO	====> Epoch: 519, cost 16.29 s
2023-12-18 03:19:19,228	44k	INFO	Train Epoch: 520 [27%]
2023-12-18 03:19:19,228	44k	INFO	Losses: [2.44846248626709, 2.524541139602661, 10.14451789855957, 24.795408248901367, 1.2752424478530884], step: 7800, lr: 9.36946523274254e-05, reference_loss: 41.18817138671875
2023-12-18 03:19:26,405	44k	INFO	====> Epoch: 520, cost 16.86 s
2023-12-18 03:19:42,632	44k	INFO	====> Epoch: 521, cost 16.23 s
2023-12-18 03:19:58,709	44k	INFO	====> Epoch: 522, cost 16.08 s
2023-12-18 03:20:14,958	44k	INFO	====> Epoch: 523, cost 16.25 s
2023-12-18 03:20:31,163	44k	INFO	====> Epoch: 524, cost 16.21 s
2023-12-18 03:20:47,502	44k	INFO	====> Epoch: 525, cost 16.34 s
2023-12-18 03:21:03,719	44k	INFO	====> Epoch: 526, cost 16.22 s
2023-12-18 03:21:20,092	44k	INFO	====> Epoch: 527, cost 16.37 s
2023-12-18 03:21:36,224	44k	INFO	====> Epoch: 528, cost 16.13 s
2023-12-18 03:21:52,548	44k	INFO	====> Epoch: 529, cost 16.32 s
2023-12-18 03:22:08,909	44k	INFO	====> Epoch: 530, cost 16.36 s
2023-12-18 03:22:25,089	44k	INFO	====> Epoch: 531, cost 16.18 s
2023-12-18 03:22:41,399	44k	INFO	====> Epoch: 532, cost 16.31 s
2023-12-18 03:22:54,307	44k	INFO	Train Epoch: 533 [60%]
2023-12-18 03:22:54,307	44k	INFO	Losses: [2.2243690490722656, 2.556581974029541, 9.608068466186523, 22.271312713623047, 0.8414894342422485], step: 8000, lr: 9.35425126554299e-05, reference_loss: 37.5018196105957
2023-12-18 03:22:59,580	44k	INFO	Saving model and optimizer state at iteration 533 to ./logs\44k\G_8000.pth
2023-12-18 03:23:00,866	44k	INFO	Saving model and optimizer state at iteration 533 to ./logs\44k\D_8000.pth
2023-12-18 03:23:10,155	44k	INFO	====> Epoch: 533, cost 28.76 s
2023-12-18 03:23:27,684	44k	INFO	====> Epoch: 534, cost 17.53 s
2023-12-18 03:23:43,782	44k	INFO	====> Epoch: 535, cost 16.10 s
2023-12-18 03:23:59,834	44k	INFO	====> Epoch: 536, cost 16.05 s
2023-12-18 03:24:16,079	44k	INFO	====> Epoch: 537, cost 16.25 s
2023-12-18 03:24:32,125	44k	INFO	====> Epoch: 538, cost 16.05 s
2023-12-18 03:24:48,580	44k	INFO	====> Epoch: 539, cost 16.46 s
2023-12-18 03:25:04,774	44k	INFO	====> Epoch: 540, cost 16.19 s
2023-12-18 03:25:21,111	44k	INFO	====> Epoch: 541, cost 16.34 s
2023-12-18 03:25:37,107	44k	INFO	====> Epoch: 542, cost 16.00 s
2023-12-18 03:25:53,498	44k	INFO	====> Epoch: 543, cost 16.39 s
2023-12-18 03:26:09,673	44k	INFO	====> Epoch: 544, cost 16.17 s
2023-12-18 03:26:25,869	44k	INFO	====> Epoch: 545, cost 16.20 s
2023-12-18 03:26:41,747	44k	INFO	Train Epoch: 546 [93%]
2023-12-18 03:26:41,747	44k	INFO	Losses: [1.6758639812469482, 3.2283408641815186, 14.777837753295898, 29.46989631652832, 0.7132466435432434], step: 8200, lr: 9.339062002506615e-05, reference_loss: 49.86518478393555
2023-12-18 03:26:42,804	44k	INFO	====> Epoch: 546, cost 16.94 s
2023-12-18 03:26:59,131	44k	INFO	====> Epoch: 547, cost 16.33 s
2023-12-18 03:27:15,325	44k	INFO	====> Epoch: 548, cost 16.19 s
2023-12-18 03:27:31,444	44k	INFO	====> Epoch: 549, cost 16.12 s
2023-12-18 03:27:47,553	44k	INFO	====> Epoch: 550, cost 16.11 s
2023-12-18 03:28:03,774	44k	INFO	====> Epoch: 551, cost 16.22 s
2023-12-18 03:28:20,055	44k	INFO	====> Epoch: 552, cost 16.28 s
2023-12-18 03:28:36,421	44k	INFO	====> Epoch: 553, cost 16.37 s
2023-12-18 03:28:52,633	44k	INFO	====> Epoch: 554, cost 16.21 s
2023-12-18 03:29:08,807	44k	INFO	====> Epoch: 555, cost 16.17 s
2023-12-18 03:29:25,093	44k	INFO	====> Epoch: 556, cost 16.29 s
2023-12-18 03:29:41,262	44k	INFO	====> Epoch: 557, cost 16.17 s
2023-12-18 03:29:57,593	44k	INFO	====> Epoch: 558, cost 16.33 s
2023-12-18 03:30:13,853	44k	INFO	====> Epoch: 559, cost 16.26 s
2023-12-18 03:30:23,669	44k	INFO	Train Epoch: 560 [27%]
2023-12-18 03:30:23,669	44k	INFO	Losses: [2.5246875286102295, 2.4349358081817627, 8.764331817626953, 22.128585815429688, 0.7562029361724854], step: 8400, lr: 9.322731916343797e-05, reference_loss: 36.608741760253906
2023-12-18 03:30:30,752	44k	INFO	====> Epoch: 560, cost 16.90 s
2023-12-18 03:30:46,838	44k	INFO	====> Epoch: 561, cost 16.09 s
2023-12-18 03:31:03,003	44k	INFO	====> Epoch: 562, cost 16.17 s
2023-12-18 03:31:19,123	44k	INFO	====> Epoch: 563, cost 16.12 s
2023-12-18 03:31:35,368	44k	INFO	====> Epoch: 564, cost 16.24 s
2023-12-18 03:31:51,650	44k	INFO	====> Epoch: 565, cost 16.28 s
2023-12-18 03:32:07,824	44k	INFO	====> Epoch: 566, cost 16.17 s
2023-12-18 03:32:23,972	44k	INFO	====> Epoch: 567, cost 16.15 s
2023-12-18 03:32:40,229	44k	INFO	====> Epoch: 568, cost 16.26 s
2023-12-18 03:32:56,944	44k	INFO	====> Epoch: 569, cost 16.71 s
2023-12-18 03:33:13,211	44k	INFO	====> Epoch: 570, cost 16.27 s
2023-12-18 03:33:29,739	44k	INFO	====> Epoch: 571, cost 16.53 s
2023-12-18 03:33:45,986	44k	INFO	====> Epoch: 572, cost 16.25 s
2023-12-18 03:33:58,609	44k	INFO	Train Epoch: 573 [60%]
2023-12-18 03:33:58,609	44k	INFO	Losses: [2.032956123352051, 2.7742443084716797, 12.18560791015625, 23.122148513793945, 0.5222935080528259], step: 8600, lr: 9.307593833853263e-05, reference_loss: 40.63725280761719
2023-12-18 03:34:02,628	44k	INFO	====> Epoch: 573, cost 16.64 s
2023-12-18 03:34:18,954	44k	INFO	====> Epoch: 574, cost 16.33 s
2023-12-18 03:34:35,403	44k	INFO	====> Epoch: 575, cost 16.45 s
2023-12-18 03:34:51,687	44k	INFO	====> Epoch: 576, cost 16.28 s
2023-12-18 03:35:07,938	44k	INFO	====> Epoch: 577, cost 16.25 s
2023-12-18 03:35:24,122	44k	INFO	====> Epoch: 578, cost 16.18 s
2023-12-18 03:35:40,459	44k	INFO	====> Epoch: 579, cost 16.34 s
2023-12-18 03:35:56,578	44k	INFO	====> Epoch: 580, cost 16.12 s
2023-12-18 03:36:12,839	44k	INFO	====> Epoch: 581, cost 16.26 s
2023-12-18 03:36:29,130	44k	INFO	====> Epoch: 582, cost 16.29 s
2023-12-18 03:36:45,239	44k	INFO	====> Epoch: 583, cost 16.11 s
2023-12-18 03:37:01,401	44k	INFO	====> Epoch: 584, cost 16.16 s
2023-12-18 03:37:17,541	44k	INFO	====> Epoch: 585, cost 16.14 s
2023-12-18 03:37:33,167	44k	INFO	Train Epoch: 586 [93%]
2023-12-18 03:37:33,167	44k	INFO	Losses: [2.367368698120117, 2.294210195541382, 9.031126022338867, 21.53502082824707, 0.6182959675788879], step: 8800, lr: 9.292480332305691e-05, reference_loss: 35.84602355957031
2023-12-18 03:37:38,352	44k	INFO	Saving model and optimizer state at iteration 586 to ./logs\44k\G_8800.pth
2023-12-18 03:37:39,664	44k	INFO	Saving model and optimizer state at iteration 586 to ./logs\44k\D_8800.pth
2023-12-18 03:37:44,395	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_800.pth
2023-12-18 03:37:44,395	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_800.pth
2023-12-18 03:37:44,939	44k	INFO	====> Epoch: 586, cost 27.40 s
2023-12-18 03:38:01,738	44k	INFO	====> Epoch: 587, cost 16.80 s
2023-12-18 03:38:18,096	44k	INFO	====> Epoch: 588, cost 16.36 s
2023-12-18 03:38:34,464	44k	INFO	====> Epoch: 589, cost 16.37 s
2023-12-18 03:38:50,641	44k	INFO	====> Epoch: 590, cost 16.18 s
2023-12-18 03:39:06,826	44k	INFO	====> Epoch: 591, cost 16.19 s
2023-12-18 03:39:22,928	44k	INFO	====> Epoch: 592, cost 16.10 s
2023-12-18 03:39:39,089	44k	INFO	====> Epoch: 593, cost 16.16 s
2023-12-18 03:39:55,483	44k	INFO	====> Epoch: 594, cost 16.39 s
2023-12-18 03:40:11,888	44k	INFO	====> Epoch: 595, cost 16.40 s
2023-12-18 03:40:28,236	44k	INFO	====> Epoch: 596, cost 16.35 s
2023-12-18 03:40:44,502	44k	INFO	====> Epoch: 597, cost 16.27 s
2023-12-18 03:41:00,679	44k	INFO	====> Epoch: 598, cost 16.18 s
2023-12-18 03:41:16,980	44k	INFO	====> Epoch: 599, cost 16.30 s
2023-12-18 03:41:26,559	44k	INFO	Train Epoch: 600 [27%]
2023-12-18 03:41:26,559	44k	INFO	Losses: [2.686659336090088, 2.2477200031280518, 7.3207926750183105, 18.719139099121094, 0.4053540527820587], step: 9000, lr: 9.276231697865521e-05, reference_loss: 31.37966537475586
2023-12-18 03:41:33,716	44k	INFO	====> Epoch: 600, cost 16.74 s
2023-12-18 03:41:50,015	44k	INFO	====> Epoch: 601, cost 16.30 s
2023-12-18 03:42:06,509	44k	INFO	====> Epoch: 602, cost 16.49 s
2023-12-18 03:42:22,815	44k	INFO	====> Epoch: 603, cost 16.31 s
2023-12-18 03:42:39,029	44k	INFO	====> Epoch: 604, cost 16.21 s
2023-12-18 03:42:55,157	44k	INFO	====> Epoch: 605, cost 16.13 s
2023-12-18 03:43:11,390	44k	INFO	====> Epoch: 606, cost 16.23 s
2023-12-18 03:43:27,594	44k	INFO	====> Epoch: 607, cost 16.20 s
2023-12-18 03:43:43,772	44k	INFO	====> Epoch: 608, cost 16.18 s
2023-12-18 03:43:59,953	44k	INFO	====> Epoch: 609, cost 16.18 s
2023-12-18 03:44:16,358	44k	INFO	====> Epoch: 610, cost 16.40 s
2023-12-18 03:44:32,550	44k	INFO	====> Epoch: 611, cost 16.19 s
2023-12-18 03:44:48,782	44k	INFO	====> Epoch: 612, cost 16.23 s
2023-12-18 03:45:01,661	44k	INFO	Train Epoch: 613 [60%]
2023-12-18 03:45:01,661	44k	INFO	Losses: [2.3935043811798096, 2.2610201835632324, 7.467950820922852, 19.677114486694336, 0.6357718110084534], step: 9200, lr: 9.261169121583839e-05, reference_loss: 32.43536376953125
2023-12-18 03:45:05,726	44k	INFO	====> Epoch: 613, cost 16.94 s
2023-12-18 03:45:22,080	44k	INFO	====> Epoch: 614, cost 16.35 s
2023-12-18 03:45:38,271	44k	INFO	====> Epoch: 615, cost 16.19 s
2023-12-18 03:45:54,490	44k	INFO	====> Epoch: 616, cost 16.22 s
2023-12-18 03:46:10,750	44k	INFO	====> Epoch: 617, cost 16.26 s
2023-12-18 03:46:26,917	44k	INFO	====> Epoch: 618, cost 16.17 s
2023-12-18 03:46:43,164	44k	INFO	====> Epoch: 619, cost 16.25 s
2023-12-18 03:46:59,487	44k	INFO	====> Epoch: 620, cost 16.32 s
2023-12-18 03:47:15,700	44k	INFO	====> Epoch: 621, cost 16.21 s
2023-12-18 03:47:31,843	44k	INFO	====> Epoch: 622, cost 16.14 s
2023-12-18 03:47:48,025	44k	INFO	====> Epoch: 623, cost 16.18 s
2023-12-18 03:48:04,310	44k	INFO	====> Epoch: 624, cost 16.28 s
2023-12-18 03:48:20,464	44k	INFO	====> Epoch: 625, cost 16.15 s
2023-12-18 03:48:36,155	44k	INFO	Train Epoch: 626 [93%]
2023-12-18 03:48:36,155	44k	INFO	Losses: [2.365736484527588, 2.5224854946136475, 10.652039527893066, 23.317241668701172, -0.05370108410716057], step: 9400, lr: 9.246131003639512e-05, reference_loss: 38.803802490234375
2023-12-18 03:48:37,219	44k	INFO	====> Epoch: 626, cost 16.76 s
2023-12-18 03:48:53,470	44k	INFO	====> Epoch: 627, cost 16.25 s
2023-12-18 03:49:09,593	44k	INFO	====> Epoch: 628, cost 16.12 s
2023-12-18 03:49:25,850	44k	INFO	====> Epoch: 629, cost 16.26 s
2023-12-18 03:49:42,077	44k	INFO	====> Epoch: 630, cost 16.23 s
2023-12-18 03:49:58,410	44k	INFO	====> Epoch: 631, cost 16.33 s
2023-12-18 03:50:14,490	44k	INFO	====> Epoch: 632, cost 16.08 s
2023-12-18 03:50:30,639	44k	INFO	====> Epoch: 633, cost 16.15 s
2023-12-18 03:50:46,749	44k	INFO	====> Epoch: 634, cost 16.11 s
2023-12-18 03:51:03,029	44k	INFO	====> Epoch: 635, cost 16.28 s
2023-12-18 03:51:19,357	44k	INFO	====> Epoch: 636, cost 16.33 s
2023-12-18 03:51:35,596	44k	INFO	====> Epoch: 637, cost 16.24 s
2023-12-18 03:51:51,767	44k	INFO	====> Epoch: 638, cost 16.17 s
2023-12-18 03:52:07,975	44k	INFO	====> Epoch: 639, cost 16.21 s
2023-12-18 03:52:17,580	44k	INFO	Train Epoch: 640 [27%]
2023-12-18 03:52:17,590	44k	INFO	Losses: [2.5325210094451904, 2.3539023399353027, 6.18679141998291, 17.071977615356445, 0.7912488579750061], step: 9600, lr: 9.229963414654495e-05, reference_loss: 28.936439514160156
2023-12-18 03:52:22,907	44k	INFO	Saving model and optimizer state at iteration 640 to ./logs\44k\G_9600.pth
2023-12-18 03:52:24,118	44k	INFO	Saving model and optimizer state at iteration 640 to ./logs\44k\D_9600.pth
2023-12-18 03:52:29,045	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_1600.pth
2023-12-18 03:52:29,045	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_1600.pth
2023-12-18 03:52:36,354	44k	INFO	====> Epoch: 640, cost 28.38 s
2023-12-18 03:52:52,607	44k	INFO	====> Epoch: 641, cost 16.25 s
2023-12-18 03:53:08,860	44k	INFO	====> Epoch: 642, cost 16.25 s
2023-12-18 03:53:25,458	44k	INFO	====> Epoch: 643, cost 16.60 s
2023-12-18 03:53:41,757	44k	INFO	====> Epoch: 644, cost 16.30 s
2023-12-18 03:53:58,143	44k	INFO	====> Epoch: 645, cost 16.39 s
2023-12-18 03:54:14,518	44k	INFO	====> Epoch: 646, cost 16.38 s
2023-12-18 03:54:30,876	44k	INFO	====> Epoch: 647, cost 16.36 s
2023-12-18 03:54:47,202	44k	INFO	====> Epoch: 648, cost 16.33 s
2023-12-18 03:55:03,670	44k	INFO	====> Epoch: 649, cost 16.47 s
2023-12-18 03:55:19,944	44k	INFO	====> Epoch: 650, cost 16.27 s
2023-12-18 03:55:36,120	44k	INFO	====> Epoch: 651, cost 16.18 s
2023-12-18 03:55:52,410	44k	INFO	====> Epoch: 652, cost 16.29 s
2023-12-18 03:56:05,085	44k	INFO	Train Epoch: 653 [60%]
2023-12-18 03:56:05,085	44k	INFO	Losses: [2.470935106277466, 2.413087844848633, 9.679454803466797, 22.19013023376465, 0.5475367903709412], step: 9800, lr: 9.214975967969402e-05, reference_loss: 37.301143646240234
2023-12-18 03:56:09,133	44k	INFO	====> Epoch: 653, cost 16.72 s
2023-12-18 03:56:25,316	44k	INFO	====> Epoch: 654, cost 16.18 s
2023-12-18 03:56:41,581	44k	INFO	====> Epoch: 655, cost 16.26 s
2023-12-18 03:56:58,156	44k	INFO	====> Epoch: 656, cost 16.58 s
2023-12-18 03:57:14,564	44k	INFO	====> Epoch: 657, cost 16.41 s
2023-12-18 03:57:30,872	44k	INFO	====> Epoch: 658, cost 16.31 s
2023-12-18 03:57:47,101	44k	INFO	====> Epoch: 659, cost 16.23 s
2023-12-18 03:58:03,526	44k	INFO	====> Epoch: 660, cost 16.43 s
2023-12-18 03:58:19,859	44k	INFO	====> Epoch: 661, cost 16.33 s
2023-12-18 03:58:36,028	44k	INFO	====> Epoch: 662, cost 16.17 s
2023-12-18 03:58:52,408	44k	INFO	====> Epoch: 663, cost 16.38 s
2023-12-18 03:59:08,630	44k	INFO	====> Epoch: 664, cost 16.22 s
2023-12-18 03:59:24,851	44k	INFO	====> Epoch: 665, cost 16.22 s
2023-12-18 03:59:40,548	44k	INFO	Train Epoch: 666 [93%]
2023-12-18 03:59:40,548	44k	INFO	Losses: [2.5068047046661377, 2.4131383895874023, 9.193986892700195, 21.434316635131836, 0.2774357795715332], step: 10000, lr: 9.200012857627587e-05, reference_loss: 35.82568359375
2023-12-18 03:59:41,587	44k	INFO	====> Epoch: 666, cost 16.74 s
2023-12-18 03:59:57,955	44k	INFO	====> Epoch: 667, cost 16.37 s
2023-12-18 04:00:14,179	44k	INFO	====> Epoch: 668, cost 16.22 s
2023-12-18 04:00:30,811	44k	INFO	====> Epoch: 669, cost 16.63 s
2023-12-18 04:00:47,121	44k	INFO	====> Epoch: 670, cost 16.31 s
2023-12-18 04:01:03,446	44k	INFO	====> Epoch: 671, cost 16.32 s
2023-12-18 04:01:19,623	44k	INFO	====> Epoch: 672, cost 16.18 s
2023-12-18 04:01:35,794	44k	INFO	====> Epoch: 673, cost 16.17 s
2023-12-18 04:01:52,256	44k	INFO	====> Epoch: 674, cost 16.46 s
2023-12-18 04:02:08,564	44k	INFO	====> Epoch: 675, cost 16.31 s
2023-12-18 04:02:24,770	44k	INFO	====> Epoch: 676, cost 16.21 s
2023-12-18 04:02:41,169	44k	INFO	====> Epoch: 677, cost 16.40 s
2023-12-18 04:02:57,522	44k	INFO	====> Epoch: 678, cost 16.35 s
2023-12-18 04:03:13,721	44k	INFO	====> Epoch: 679, cost 16.20 s
2023-12-18 04:03:23,308	44k	INFO	Train Epoch: 680 [27%]
2023-12-18 04:03:23,308	44k	INFO	Losses: [2.6443393230438232, 2.3035964965820312, 5.249619960784912, 20.20764923095703, 0.637464165687561], step: 10200, lr: 9.183925909856629e-05, reference_loss: 31.04266929626465
2023-12-18 04:03:30,446	44k	INFO	====> Epoch: 680, cost 16.73 s
2023-12-18 04:03:46,553	44k	INFO	====> Epoch: 681, cost 16.11 s
2023-12-18 04:04:02,767	44k	INFO	====> Epoch: 682, cost 16.21 s
2023-12-18 04:04:19,113	44k	INFO	====> Epoch: 683, cost 16.35 s
2023-12-18 04:04:35,348	44k	INFO	====> Epoch: 684, cost 16.23 s
2023-12-18 04:04:51,503	44k	INFO	====> Epoch: 685, cost 16.15 s
2023-12-18 04:05:07,769	44k	INFO	====> Epoch: 686, cost 16.27 s
2023-12-18 04:05:24,035	44k	INFO	====> Epoch: 687, cost 16.27 s
2023-12-18 04:05:40,267	44k	INFO	====> Epoch: 688, cost 16.23 s
2023-12-18 04:05:56,556	44k	INFO	====> Epoch: 689, cost 16.29 s
2023-12-18 04:06:12,773	44k	INFO	====> Epoch: 690, cost 16.22 s
2023-12-18 04:06:29,073	44k	INFO	====> Epoch: 691, cost 16.30 s
2023-12-18 04:06:45,371	44k	INFO	====> Epoch: 692, cost 16.30 s
2023-12-18 04:06:58,129	44k	INFO	Train Epoch: 693 [60%]
2023-12-18 04:06:58,129	44k	INFO	Losses: [2.4249868392944336, 2.5093863010406494, 8.122474670410156, 19.230562210083008, 0.8282244205474854], step: 10400, lr: 9.169013218034329e-05, reference_loss: 33.11563491821289
2023-12-18 04:07:03,419	44k	INFO	Saving model and optimizer state at iteration 693 to ./logs\44k\G_10400.pth
2023-12-18 04:07:04,624	44k	INFO	Saving model and optimizer state at iteration 693 to ./logs\44k\D_10400.pth
2023-12-18 04:07:09,069	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_2400.pth
2023-12-18 04:07:09,069	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_2400.pth
2023-12-18 04:07:13,277	44k	INFO	====> Epoch: 693, cost 27.91 s
2023-12-18 04:07:30,358	44k	INFO	====> Epoch: 694, cost 17.08 s
2023-12-18 04:07:46,492	44k	INFO	====> Epoch: 695, cost 16.13 s
2023-12-18 04:08:03,021	44k	INFO	====> Epoch: 696, cost 16.53 s
2023-12-18 04:08:22,012	44k	INFO	====> Epoch: 697, cost 18.99 s
2023-12-18 04:08:43,600	44k	INFO	====> Epoch: 698, cost 21.59 s
2023-12-18 04:09:01,932	44k	INFO	====> Epoch: 699, cost 18.33 s
2023-12-18 04:09:20,406	44k	INFO	====> Epoch: 700, cost 18.47 s
2023-12-18 04:09:38,596	44k	INFO	====> Epoch: 701, cost 18.19 s
2023-12-18 04:09:57,071	44k	INFO	====> Epoch: 702, cost 18.48 s
2023-12-18 04:10:14,556	44k	INFO	====> Epoch: 703, cost 17.48 s
2023-12-18 04:10:31,157	44k	INFO	====> Epoch: 704, cost 16.60 s
2023-12-18 04:10:48,395	44k	INFO	====> Epoch: 705, cost 17.24 s
2023-12-18 04:11:04,835	44k	INFO	Train Epoch: 706 [93%]
2023-12-18 04:11:04,835	44k	INFO	Losses: [2.4289908409118652, 2.600823402404785, 9.889498710632324, 21.11870002746582, 1.2660746574401855], step: 10600, lr: 9.154124741169722e-05, reference_loss: 37.3040885925293
2023-12-18 04:11:05,860	44k	INFO	====> Epoch: 706, cost 17.47 s
2023-12-18 04:11:22,392	44k	INFO	====> Epoch: 707, cost 16.53 s
2023-12-18 04:11:38,517	44k	INFO	====> Epoch: 708, cost 16.12 s
2023-12-18 04:11:55,150	44k	INFO	====> Epoch: 709, cost 16.63 s
2023-12-18 04:12:11,581	44k	INFO	====> Epoch: 710, cost 16.43 s
2023-12-18 04:12:27,921	44k	INFO	====> Epoch: 711, cost 16.34 s
2023-12-18 04:12:46,291	44k	INFO	====> Epoch: 712, cost 18.37 s
2023-12-18 04:13:03,321	44k	INFO	====> Epoch: 713, cost 17.03 s
2023-12-18 04:13:20,095	44k	INFO	====> Epoch: 714, cost 16.77 s
2023-12-18 04:13:37,295	44k	INFO	====> Epoch: 715, cost 17.20 s
2023-12-18 04:13:54,982	44k	INFO	====> Epoch: 716, cost 17.69 s
2023-12-18 04:14:12,684	44k	INFO	====> Epoch: 717, cost 17.70 s
2023-12-18 04:14:33,321	44k	INFO	====> Epoch: 718, cost 20.64 s
2023-12-18 04:14:58,832	44k	INFO	====> Epoch: 719, cost 25.51 s
2023-12-18 04:15:09,509	44k	INFO	Train Epoch: 720 [27%]
2023-12-18 04:15:09,509	44k	INFO	Losses: [2.1472959518432617, 2.515350580215454, 7.656266212463379, 23.180870056152344, 0.794455885887146], step: 10800, lr: 9.138118032388012e-05, reference_loss: 36.29423904418945
2023-12-18 04:15:16,680	44k	INFO	====> Epoch: 720, cost 17.85 s
2023-12-18 04:15:32,963	44k	INFO	====> Epoch: 721, cost 16.28 s
2023-12-18 04:15:49,317	44k	INFO	====> Epoch: 722, cost 16.35 s
2023-12-18 04:16:05,535	44k	INFO	====> Epoch: 723, cost 16.22 s
2023-12-18 04:16:21,760	44k	INFO	====> Epoch: 724, cost 16.22 s
2023-12-18 04:16:38,253	44k	INFO	====> Epoch: 725, cost 16.49 s
2023-12-18 04:16:54,635	44k	INFO	====> Epoch: 726, cost 16.38 s
2023-12-18 04:17:11,044	44k	INFO	====> Epoch: 727, cost 16.41 s
2023-12-18 04:17:27,237	44k	INFO	====> Epoch: 728, cost 16.19 s
2023-12-18 04:17:43,593	44k	INFO	====> Epoch: 729, cost 16.36 s
2023-12-18 04:17:59,774	44k	INFO	====> Epoch: 730, cost 16.18 s
2023-12-18 04:18:16,032	44k	INFO	====> Epoch: 731, cost 16.26 s
2023-12-18 04:18:32,483	44k	INFO	====> Epoch: 732, cost 16.45 s
2023-12-18 04:18:45,297	44k	INFO	Train Epoch: 733 [60%]
2023-12-18 04:18:45,297	44k	INFO	Losses: [2.0838499069213867, 2.8245339393615723, 9.96864128112793, 21.94310188293457, 0.9255548715591431], step: 11000, lr: 9.123279722563828e-05, reference_loss: 37.74568557739258
2023-12-18 04:18:49,346	44k	INFO	====> Epoch: 733, cost 16.86 s
2023-12-18 04:19:05,580	44k	INFO	====> Epoch: 734, cost 16.22 s
2023-12-18 04:19:21,894	44k	INFO	====> Epoch: 735, cost 16.32 s
2023-12-18 04:19:38,221	44k	INFO	====> Epoch: 736, cost 16.33 s
2023-12-18 04:19:54,561	44k	INFO	====> Epoch: 737, cost 16.34 s
2023-12-18 04:20:10,923	44k	INFO	====> Epoch: 738, cost 16.36 s
2023-12-18 04:20:27,208	44k	INFO	====> Epoch: 739, cost 16.28 s
2023-12-18 04:20:43,673	44k	INFO	====> Epoch: 740, cost 16.47 s
2023-12-18 04:20:59,903	44k	INFO	====> Epoch: 741, cost 16.23 s
2023-12-18 04:21:16,153	44k	INFO	====> Epoch: 742, cost 16.25 s
2023-12-18 04:21:32,602	44k	INFO	====> Epoch: 743, cost 16.45 s
2023-12-18 04:21:48,961	44k	INFO	====> Epoch: 744, cost 16.36 s
2023-12-18 04:22:05,154	44k	INFO	====> Epoch: 745, cost 16.19 s
2023-12-18 04:22:20,897	44k	INFO	Train Epoch: 746 [93%]
2023-12-18 04:22:20,897	44k	INFO	Losses: [2.150676727294922, 2.9614171981811523, 15.374418258666992, 18.337383270263672, 0.8749496340751648], step: 11200, lr: 9.108465506917204e-05, reference_loss: 39.69884490966797
2023-12-18 04:22:26,210	44k	INFO	Saving model and optimizer state at iteration 746 to ./logs\44k\G_11200.pth
2023-12-18 04:22:27,368	44k	INFO	Saving model and optimizer state at iteration 746 to ./logs\44k\D_11200.pth
2023-12-18 04:22:32,351	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_3200.pth
2023-12-18 04:22:32,351	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_3200.pth
2023-12-18 04:22:32,913	44k	INFO	====> Epoch: 746, cost 27.76 s
2023-12-18 04:22:49,358	44k	INFO	====> Epoch: 747, cost 16.44 s
2023-12-18 04:23:05,849	44k	INFO	====> Epoch: 748, cost 16.49 s
2023-12-18 04:23:22,287	44k	INFO	====> Epoch: 749, cost 16.44 s
2023-12-18 04:23:38,644	44k	INFO	====> Epoch: 750, cost 16.36 s
2023-12-18 04:23:54,906	44k	INFO	====> Epoch: 751, cost 16.26 s
2023-12-18 04:24:11,094	44k	INFO	====> Epoch: 752, cost 16.19 s
2023-12-18 04:24:27,453	44k	INFO	====> Epoch: 753, cost 16.36 s
2023-12-18 04:24:43,786	44k	INFO	====> Epoch: 754, cost 16.33 s
2023-12-18 04:25:00,094	44k	INFO	====> Epoch: 755, cost 16.31 s
2023-12-18 04:25:16,326	44k	INFO	====> Epoch: 756, cost 16.23 s
2023-12-18 04:25:32,615	44k	INFO	====> Epoch: 757, cost 16.29 s
2023-12-18 04:25:48,963	44k	INFO	====> Epoch: 758, cost 16.35 s
2023-12-18 04:26:05,271	44k	INFO	====> Epoch: 759, cost 16.31 s
2023-12-18 04:26:14,972	44k	INFO	Train Epoch: 760 [27%]
2023-12-18 04:26:14,972	44k	INFO	Losses: [2.172591209411621, 2.789529323577881, 6.801379680633545, 20.053255081176758, 0.6327328085899353], step: 11400, lr: 9.092538636906162e-05, reference_loss: 32.44948959350586
2023-12-18 04:26:22,097	44k	INFO	====> Epoch: 760, cost 16.83 s
2023-12-18 04:26:38,452	44k	INFO	====> Epoch: 761, cost 16.36 s
2023-12-18 04:26:54,853	44k	INFO	====> Epoch: 762, cost 16.40 s
2023-12-18 04:27:11,268	44k	INFO	====> Epoch: 763, cost 16.42 s
2023-12-18 04:27:27,640	44k	INFO	====> Epoch: 764, cost 16.37 s
2023-12-18 04:27:44,120	44k	INFO	====> Epoch: 765, cost 16.48 s
2023-12-18 04:28:00,585	44k	INFO	====> Epoch: 766, cost 16.46 s
2023-12-18 04:28:16,862	44k	INFO	====> Epoch: 767, cost 16.28 s
2023-12-18 04:28:33,224	44k	INFO	====> Epoch: 768, cost 16.36 s
2023-12-18 04:28:49,465	44k	INFO	====> Epoch: 769, cost 16.24 s
2023-12-18 04:29:05,750	44k	INFO	====> Epoch: 770, cost 16.28 s
2023-12-18 04:29:22,088	44k	INFO	====> Epoch: 771, cost 16.34 s
2023-12-18 04:29:38,589	44k	INFO	====> Epoch: 772, cost 16.50 s
2023-12-18 04:29:51,381	44k	INFO	Train Epoch: 773 [60%]
2023-12-18 04:29:51,381	44k	INFO	Losses: [2.5176641941070557, 2.639613628387451, 9.57396411895752, 18.828937530517578, 0.8886445760726929], step: 11600, lr: 9.077774338075196e-05, reference_loss: 34.44882583618164
2023-12-18 04:29:55,424	44k	INFO	====> Epoch: 773, cost 16.83 s
2023-12-18 04:30:11,867	44k	INFO	====> Epoch: 774, cost 16.44 s
2023-12-18 04:30:28,196	44k	INFO	====> Epoch: 775, cost 16.33 s
2023-12-18 04:30:44,408	44k	INFO	====> Epoch: 776, cost 16.21 s
2023-12-18 04:31:00,745	44k	INFO	====> Epoch: 777, cost 16.34 s
2023-12-18 04:31:17,156	44k	INFO	====> Epoch: 778, cost 16.41 s
2023-12-18 04:31:33,323	44k	INFO	====> Epoch: 779, cost 16.17 s
2023-12-18 04:31:49,659	44k	INFO	====> Epoch: 780, cost 16.34 s
2023-12-18 04:32:05,732	44k	INFO	====> Epoch: 781, cost 16.07 s
2023-12-18 04:32:22,016	44k	INFO	====> Epoch: 782, cost 16.28 s
2023-12-18 04:32:38,130	44k	INFO	====> Epoch: 783, cost 16.11 s
2023-12-18 04:32:54,497	44k	INFO	====> Epoch: 784, cost 16.37 s
2023-12-18 04:33:10,810	44k	INFO	====> Epoch: 785, cost 16.31 s
2023-12-18 04:33:26,624	44k	INFO	Train Epoch: 786 [93%]
2023-12-18 04:33:26,624	44k	INFO	Losses: [1.2847888469696045, 3.8371198177337646, 14.647244453430176, 29.79035186767578, 1.2161997556686401], step: 11800, lr: 9.063034013244091e-05, reference_loss: 50.77570343017578
2023-12-18 04:33:27,652	44k	INFO	====> Epoch: 786, cost 16.84 s
2023-12-18 04:33:43,979	44k	INFO	====> Epoch: 787, cost 16.33 s
2023-12-18 04:34:00,267	44k	INFO	====> Epoch: 788, cost 16.29 s
2023-12-18 04:34:16,519	44k	INFO	====> Epoch: 789, cost 16.25 s
2023-12-18 04:34:32,664	44k	INFO	====> Epoch: 790, cost 16.15 s
2023-12-18 04:34:48,925	44k	INFO	====> Epoch: 791, cost 16.26 s
2023-12-18 04:35:05,079	44k	INFO	====> Epoch: 792, cost 16.15 s
2023-12-18 04:35:21,364	44k	INFO	====> Epoch: 793, cost 16.28 s
2023-12-18 04:35:37,565	44k	INFO	====> Epoch: 794, cost 16.20 s
2023-12-18 04:35:53,693	44k	INFO	====> Epoch: 795, cost 16.13 s
2023-12-18 04:36:09,797	44k	INFO	====> Epoch: 796, cost 16.10 s
2023-12-18 04:36:26,049	44k	INFO	====> Epoch: 797, cost 16.25 s
2023-12-18 04:36:42,407	44k	INFO	====> Epoch: 798, cost 16.36 s
2023-12-18 04:36:58,649	44k	INFO	====> Epoch: 799, cost 16.24 s
2023-12-18 04:37:08,240	44k	INFO	Train Epoch: 800 [27%]
2023-12-18 04:37:08,240	44k	INFO	Losses: [2.3202173709869385, 2.5541932582855225, 5.824159145355225, 18.169513702392578, 0.5033887028694153], step: 12000, lr: 9.04718658378136e-05, reference_loss: 29.37147331237793
2023-12-18 04:37:13,560	44k	INFO	Saving model and optimizer state at iteration 800 to ./logs\44k\G_12000.pth
2023-12-18 04:37:14,796	44k	INFO	Saving model and optimizer state at iteration 800 to ./logs\44k\D_12000.pth
2023-12-18 04:37:19,860	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_4000.pth
2023-12-18 04:37:19,860	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_4000.pth
2023-12-18 04:37:27,208	44k	INFO	====> Epoch: 800, cost 28.56 s
2023-12-18 04:37:44,177	44k	INFO	====> Epoch: 801, cost 16.97 s
2023-12-18 04:38:00,746	44k	INFO	====> Epoch: 802, cost 16.57 s
2023-12-18 04:38:17,242	44k	INFO	====> Epoch: 803, cost 16.50 s
2023-12-18 04:38:33,367	44k	INFO	====> Epoch: 804, cost 16.12 s
2023-12-18 04:38:49,642	44k	INFO	====> Epoch: 805, cost 16.28 s
2023-12-18 04:39:05,987	44k	INFO	====> Epoch: 806, cost 16.35 s
2023-12-18 04:39:22,364	44k	INFO	====> Epoch: 807, cost 16.38 s
2023-12-18 04:39:38,688	44k	INFO	====> Epoch: 808, cost 16.32 s
2023-12-18 04:39:54,900	44k	INFO	====> Epoch: 809, cost 16.21 s
2023-12-18 04:40:11,387	44k	INFO	====> Epoch: 810, cost 16.49 s
2023-12-18 04:40:27,716	44k	INFO	====> Epoch: 811, cost 16.33 s
2023-12-18 04:40:44,002	44k	INFO	====> Epoch: 812, cost 16.29 s
2023-12-18 04:40:56,711	44k	INFO	Train Epoch: 813 [60%]
2023-12-18 04:40:56,711	44k	INFO	Losses: [2.2773890495300293, 2.357138156890869, 9.44801139831543, 20.78373908996582, 0.6980268955230713], step: 12200, lr: 9.032495926789236e-05, reference_loss: 35.564308166503906
2023-12-18 04:41:00,809	44k	INFO	====> Epoch: 813, cost 16.81 s
2023-12-18 04:41:16,993	44k	INFO	====> Epoch: 814, cost 16.18 s
2023-12-18 04:41:33,412	44k	INFO	====> Epoch: 815, cost 16.42 s
2023-12-18 04:41:49,772	44k	INFO	====> Epoch: 816, cost 16.36 s
2023-12-18 04:42:06,068	44k	INFO	====> Epoch: 817, cost 16.30 s
2023-12-18 04:42:22,329	44k	INFO	====> Epoch: 818, cost 16.26 s
2023-12-18 04:42:38,584	44k	INFO	====> Epoch: 819, cost 16.26 s
2023-12-18 04:42:54,895	44k	INFO	====> Epoch: 820, cost 16.31 s
2023-12-18 04:43:11,177	44k	INFO	====> Epoch: 821, cost 16.28 s
2023-12-18 04:43:27,504	44k	INFO	====> Epoch: 822, cost 16.33 s
2023-12-18 04:43:43,960	44k	INFO	====> Epoch: 823, cost 16.46 s
2023-12-18 04:44:00,375	44k	INFO	====> Epoch: 824, cost 16.41 s
2023-12-18 04:44:16,565	44k	INFO	====> Epoch: 825, cost 16.19 s
2023-12-18 04:44:32,281	44k	INFO	Train Epoch: 826 [93%]
2023-12-18 04:44:32,281	44k	INFO	Losses: [2.5697479248046875, 1.9767307043075562, 4.003001689910889, 18.901403427124023, 0.7684782147407532], step: 12400, lr: 9.017829124218688e-05, reference_loss: 28.219362258911133
2023-12-18 04:44:33,309	44k	INFO	====> Epoch: 826, cost 16.74 s
2023-12-18 04:44:49,694	44k	INFO	====> Epoch: 827, cost 16.39 s
2023-12-18 04:45:06,084	44k	INFO	====> Epoch: 828, cost 16.39 s
2023-12-18 04:45:22,406	44k	INFO	====> Epoch: 829, cost 16.32 s
2023-12-18 04:45:38,917	44k	INFO	====> Epoch: 830, cost 16.51 s
2023-12-18 04:45:55,290	44k	INFO	====> Epoch: 831, cost 16.37 s
2023-12-18 04:46:11,489	44k	INFO	====> Epoch: 832, cost 16.20 s
2023-12-18 04:46:27,795	44k	INFO	====> Epoch: 833, cost 16.31 s
2023-12-18 04:46:44,146	44k	INFO	====> Epoch: 834, cost 16.35 s
2023-12-18 04:47:00,479	44k	INFO	====> Epoch: 835, cost 16.33 s
2023-12-18 04:47:16,780	44k	INFO	====> Epoch: 836, cost 16.30 s
2023-12-18 04:47:33,116	44k	INFO	====> Epoch: 837, cost 16.34 s
2023-12-18 04:47:49,541	44k	INFO	====> Epoch: 838, cost 16.43 s
2023-12-18 04:48:05,711	44k	INFO	====> Epoch: 839, cost 16.17 s
2023-12-18 04:48:15,306	44k	INFO	Train Epoch: 840 [27%]
2023-12-18 04:48:15,306	44k	INFO	Losses: [2.4772167205810547, 2.981828451156616, 10.502273559570312, 19.10709571838379, 0.8394704461097717], step: 12600, lr: 9.002060739068175e-05, reference_loss: 35.90788269042969
2023-12-18 04:48:22,402	44k	INFO	====> Epoch: 840, cost 16.69 s
2023-12-18 04:48:38,652	44k	INFO	====> Epoch: 841, cost 16.25 s
2023-12-18 04:48:54,908	44k	INFO	====> Epoch: 842, cost 16.26 s
2023-12-18 04:49:11,277	44k	INFO	====> Epoch: 843, cost 16.37 s
2023-12-18 04:49:27,684	44k	INFO	====> Epoch: 844, cost 16.41 s
2023-12-18 04:49:44,030	44k	INFO	====> Epoch: 845, cost 16.35 s
2023-12-18 04:50:00,326	44k	INFO	====> Epoch: 846, cost 16.30 s
2023-12-18 04:50:16,670	44k	INFO	====> Epoch: 847, cost 16.34 s
2023-12-18 04:50:32,936	44k	INFO	====> Epoch: 848, cost 16.27 s
2023-12-18 04:50:49,315	44k	INFO	====> Epoch: 849, cost 16.38 s
2023-12-18 04:51:05,671	44k	INFO	====> Epoch: 850, cost 16.36 s
2023-12-18 04:51:21,899	44k	INFO	====> Epoch: 851, cost 16.23 s
2023-12-18 04:51:38,154	44k	INFO	====> Epoch: 852, cost 16.25 s
2023-12-18 04:51:50,893	44k	INFO	Train Epoch: 853 [60%]
2023-12-18 04:51:50,893	44k	INFO	Losses: [2.094500780105591, 2.8708062171936035, 10.942903518676758, 22.112499237060547, 0.9065408110618591], step: 12800, lr: 8.987443356601786e-05, reference_loss: 38.927249908447266
2023-12-18 04:51:56,236	44k	INFO	Saving model and optimizer state at iteration 853 to ./logs\44k\G_12800.pth
2023-12-18 04:51:57,355	44k	INFO	Saving model and optimizer state at iteration 853 to ./logs\44k\D_12800.pth
2023-12-18 04:52:02,740	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_4800.pth
2023-12-18 04:52:02,740	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_4800.pth
2023-12-18 04:52:06,974	44k	INFO	====> Epoch: 853, cost 28.82 s
2023-12-18 04:52:24,081	44k	INFO	====> Epoch: 854, cost 17.11 s
2023-12-18 04:52:40,662	44k	INFO	====> Epoch: 855, cost 16.58 s
2023-12-18 04:52:57,389	44k	INFO	====> Epoch: 856, cost 16.73 s
2023-12-18 04:53:13,690	44k	INFO	====> Epoch: 857, cost 16.30 s
2023-12-18 04:53:30,033	44k	INFO	====> Epoch: 858, cost 16.34 s
2023-12-18 04:53:46,340	44k	INFO	====> Epoch: 859, cost 16.31 s
2023-12-18 04:54:02,699	44k	INFO	====> Epoch: 860, cost 16.36 s
2023-12-18 04:54:19,371	44k	INFO	====> Epoch: 861, cost 16.67 s
2023-12-18 04:54:35,621	44k	INFO	====> Epoch: 862, cost 16.25 s
2023-12-18 04:54:51,937	44k	INFO	====> Epoch: 863, cost 16.32 s
2023-12-18 04:55:08,301	44k	INFO	====> Epoch: 864, cost 16.36 s
2023-12-18 04:55:24,813	44k	INFO	====> Epoch: 865, cost 16.51 s
2023-12-18 04:55:40,656	44k	INFO	Train Epoch: 866 [93%]
2023-12-18 04:55:40,656	44k	INFO	Losses: [1.918639898300171, 2.914567232131958, 14.78557014465332, 20.96776580810547, 0.6036921143531799], step: 13000, lr: 8.972849709575134e-05, reference_loss: 41.19023513793945
2023-12-18 04:55:41,725	44k	INFO	====> Epoch: 866, cost 16.91 s
2023-12-18 04:55:58,074	44k	INFO	====> Epoch: 867, cost 16.35 s
2023-12-18 04:56:14,467	44k	INFO	====> Epoch: 868, cost 16.39 s
2023-12-18 04:56:30,735	44k	INFO	====> Epoch: 869, cost 16.27 s
2023-12-18 04:56:46,994	44k	INFO	====> Epoch: 870, cost 16.26 s
2023-12-18 04:57:03,334	44k	INFO	====> Epoch: 871, cost 16.34 s
2023-12-18 04:57:19,892	44k	INFO	====> Epoch: 872, cost 16.56 s
2023-12-18 04:57:36,186	44k	INFO	====> Epoch: 873, cost 16.29 s
2023-12-18 04:57:52,498	44k	INFO	====> Epoch: 874, cost 16.31 s
2023-12-18 04:58:08,765	44k	INFO	====> Epoch: 875, cost 16.27 s
2023-12-18 04:58:25,122	44k	INFO	====> Epoch: 876, cost 16.36 s
2023-12-18 04:58:41,599	44k	INFO	====> Epoch: 877, cost 16.48 s
2023-12-18 04:58:58,039	44k	INFO	====> Epoch: 878, cost 16.44 s
2023-12-18 04:59:14,320	44k	INFO	====> Epoch: 879, cost 16.28 s
2023-12-18 04:59:24,084	44k	INFO	Train Epoch: 880 [27%]
2023-12-18 04:59:24,084	44k	INFO	Losses: [2.2481818199157715, 3.1555540561676025, 12.307568550109863, 24.523696899414062, 0.6064103245735168], step: 13200, lr: 8.957159974477111e-05, reference_loss: 42.84141159057617
2023-12-18 04:59:31,221	44k	INFO	====> Epoch: 880, cost 16.90 s
2023-12-18 04:59:47,541	44k	INFO	====> Epoch: 881, cost 16.32 s
2023-12-18 05:00:03,989	44k	INFO	====> Epoch: 882, cost 16.45 s
2023-12-18 05:00:20,368	44k	INFO	====> Epoch: 883, cost 16.38 s
2023-12-18 05:00:36,792	44k	INFO	====> Epoch: 884, cost 16.42 s
2023-12-18 05:00:53,110	44k	INFO	====> Epoch: 885, cost 16.32 s
2023-12-18 05:01:09,483	44k	INFO	====> Epoch: 886, cost 16.37 s
2023-12-18 05:01:25,709	44k	INFO	====> Epoch: 887, cost 16.22 s
2023-12-18 05:01:42,007	44k	INFO	====> Epoch: 888, cost 16.31 s
2023-12-18 05:01:58,262	44k	INFO	====> Epoch: 889, cost 16.25 s
2023-12-18 05:02:14,667	44k	INFO	====> Epoch: 890, cost 16.40 s
2023-12-18 05:02:31,102	44k	INFO	====> Epoch: 891, cost 16.44 s
2023-12-18 05:02:47,438	44k	INFO	====> Epoch: 892, cost 16.34 s
2023-12-18 05:03:00,125	44k	INFO	Train Epoch: 893 [60%]
2023-12-18 05:03:00,125	44k	INFO	Losses: [2.5325207710266113, 2.485131025314331, 10.87796401977539, 22.48543357849121, 0.878551721572876], step: 13400, lr: 8.942615501055449e-05, reference_loss: 39.25960159301758
2023-12-18 05:03:04,205	44k	INFO	====> Epoch: 893, cost 16.77 s
2023-12-18 05:03:20,606	44k	INFO	====> Epoch: 894, cost 16.40 s
2023-12-18 05:03:36,939	44k	INFO	====> Epoch: 895, cost 16.33 s
2023-12-18 05:03:53,203	44k	INFO	====> Epoch: 896, cost 16.26 s
2023-12-18 05:04:09,364	44k	INFO	====> Epoch: 897, cost 16.16 s
2023-12-18 05:04:25,653	44k	INFO	====> Epoch: 898, cost 16.29 s
2023-12-18 05:04:41,734	44k	INFO	====> Epoch: 899, cost 16.08 s
2023-12-18 05:04:57,916	44k	INFO	====> Epoch: 900, cost 16.18 s
2023-12-18 05:05:14,157	44k	INFO	====> Epoch: 901, cost 16.24 s
2023-12-18 05:05:30,547	44k	INFO	====> Epoch: 902, cost 16.39 s
2023-12-18 05:05:46,776	44k	INFO	====> Epoch: 903, cost 16.23 s
2023-12-18 05:06:02,960	44k	INFO	====> Epoch: 904, cost 16.18 s
2023-12-18 05:06:19,246	44k	INFO	====> Epoch: 905, cost 16.29 s
2023-12-18 05:06:35,006	44k	INFO	Train Epoch: 906 [93%]
2023-12-18 05:06:35,006	44k	INFO	Losses: [1.924677848815918, 2.9283578395843506, 11.971912384033203, 22.45263671875, 0.39251601696014404], step: 13600, lr: 8.928094644685142e-05, reference_loss: 39.670101165771484
2023-12-18 05:06:40,317	44k	INFO	Saving model and optimizer state at iteration 906 to ./logs\44k\G_13600.pth
2023-12-18 05:06:41,627	44k	INFO	Saving model and optimizer state at iteration 906 to ./logs\44k\D_13600.pth
2023-12-18 05:06:45,790	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_5600.pth
2023-12-18 05:06:45,790	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_5600.pth
2023-12-18 05:06:46,351	44k	INFO	====> Epoch: 906, cost 27.10 s
2023-12-18 05:07:02,769	44k	INFO	====> Epoch: 907, cost 16.42 s
2023-12-18 05:07:19,299	44k	INFO	====> Epoch: 908, cost 16.53 s
2023-12-18 05:07:35,479	44k	INFO	====> Epoch: 909, cost 16.18 s
2023-12-18 05:07:51,730	44k	INFO	====> Epoch: 910, cost 16.25 s
2023-12-18 05:08:07,919	44k	INFO	====> Epoch: 911, cost 16.19 s
2023-12-18 05:08:24,081	44k	INFO	====> Epoch: 912, cost 16.16 s
2023-12-18 05:08:40,275	44k	INFO	====> Epoch: 913, cost 16.19 s
2023-12-18 05:08:56,745	44k	INFO	====> Epoch: 914, cost 16.47 s
2023-12-18 05:09:13,143	44k	INFO	====> Epoch: 915, cost 16.40 s
2023-12-18 05:09:29,477	44k	INFO	====> Epoch: 916, cost 16.33 s
2023-12-18 05:09:45,720	44k	INFO	====> Epoch: 917, cost 16.24 s
2023-12-18 05:10:02,383	44k	INFO	====> Epoch: 918, cost 16.66 s
2023-12-18 05:10:18,704	44k	INFO	====> Epoch: 919, cost 16.32 s
2023-12-18 05:10:28,460	44k	INFO	Train Epoch: 920 [27%]
2023-12-18 05:10:28,460	44k	INFO	Losses: [2.205873489379883, 2.511430501937866, 7.871214389801025, 21.171934127807617, 0.7102806568145752], step: 13800, lr: 8.912483167346374e-05, reference_loss: 34.470733642578125
2023-12-18 05:10:35,653	44k	INFO	====> Epoch: 920, cost 16.95 s
2023-12-18 05:10:51,783	44k	INFO	====> Epoch: 921, cost 16.13 s
2023-12-18 05:11:08,097	44k	INFO	====> Epoch: 922, cost 16.31 s
2023-12-18 05:11:24,356	44k	INFO	====> Epoch: 923, cost 16.26 s
2023-12-18 05:11:40,484	44k	INFO	====> Epoch: 924, cost 16.13 s
2023-12-18 05:11:56,847	44k	INFO	====> Epoch: 925, cost 16.36 s
2023-12-18 05:12:13,067	44k	INFO	====> Epoch: 926, cost 16.22 s
2023-12-18 05:12:29,316	44k	INFO	====> Epoch: 927, cost 16.25 s
2023-12-18 05:12:45,576	44k	INFO	====> Epoch: 928, cost 16.26 s
2023-12-18 05:13:01,945	44k	INFO	====> Epoch: 929, cost 16.37 s
2023-12-18 05:13:18,230	44k	INFO	====> Epoch: 930, cost 16.28 s
2023-12-18 05:13:34,963	44k	INFO	====> Epoch: 931, cost 16.73 s
2023-12-18 05:13:51,496	44k	INFO	====> Epoch: 932, cost 16.53 s
2023-12-18 05:14:04,309	44k	INFO	Train Epoch: 933 [60%]
2023-12-18 05:14:04,309	44k	INFO	Losses: [1.9371291399002075, 2.9745523929595947, 9.684198379516602, 19.643077850341797, 0.7068173885345459], step: 14000, lr: 8.898011239311388e-05, reference_loss: 34.945777893066406
2023-12-18 05:14:08,399	44k	INFO	====> Epoch: 933, cost 16.90 s
2023-12-18 05:14:24,596	44k	INFO	====> Epoch: 934, cost 16.20 s
2023-12-18 05:14:40,850	44k	INFO	====> Epoch: 935, cost 16.25 s
2023-12-18 05:14:57,188	44k	INFO	====> Epoch: 936, cost 16.34 s
2023-12-18 05:15:13,507	44k	INFO	====> Epoch: 937, cost 16.32 s
2023-12-18 05:15:29,796	44k	INFO	====> Epoch: 938, cost 16.29 s
2023-12-18 05:15:46,210	44k	INFO	====> Epoch: 939, cost 16.41 s
2023-12-18 05:16:02,595	44k	INFO	====> Epoch: 940, cost 16.39 s
2023-12-18 05:16:18,760	44k	INFO	====> Epoch: 941, cost 16.17 s
2023-12-18 05:16:34,986	44k	INFO	====> Epoch: 942, cost 16.23 s
2023-12-18 05:16:51,099	44k	INFO	====> Epoch: 943, cost 16.11 s
2023-12-18 05:17:07,323	44k	INFO	====> Epoch: 944, cost 16.22 s
2023-12-18 05:17:23,493	44k	INFO	====> Epoch: 945, cost 16.17 s
2023-12-18 05:17:39,116	44k	INFO	Train Epoch: 946 [93%]
2023-12-18 05:17:39,116	44k	INFO	Losses: [1.27572762966156, 3.6431021690368652, 16.160905838012695, 25.824914932250977, 0.7454162836074829], step: 14200, lr: 8.88356281052988e-05, reference_loss: 47.650062561035156
2023-12-18 05:17:40,131	44k	INFO	====> Epoch: 946, cost 16.64 s
2023-12-18 05:17:56,530	44k	INFO	====> Epoch: 947, cost 16.40 s
2023-12-18 05:18:12,741	44k	INFO	====> Epoch: 948, cost 16.21 s
2023-12-18 05:18:28,994	44k	INFO	====> Epoch: 949, cost 16.25 s
2023-12-18 05:18:45,281	44k	INFO	====> Epoch: 950, cost 16.29 s
2023-12-18 05:19:01,559	44k	INFO	====> Epoch: 951, cost 16.28 s
2023-12-18 05:19:17,873	44k	INFO	====> Epoch: 952, cost 16.31 s
2023-12-18 05:19:34,107	44k	INFO	====> Epoch: 953, cost 16.23 s
2023-12-18 05:19:50,422	44k	INFO	====> Epoch: 954, cost 16.32 s
2023-12-18 05:20:06,641	44k	INFO	====> Epoch: 955, cost 16.22 s
2023-12-18 05:20:22,846	44k	INFO	====> Epoch: 956, cost 16.20 s
2023-12-18 05:20:39,026	44k	INFO	====> Epoch: 957, cost 16.18 s
2023-12-18 05:20:55,176	44k	INFO	====> Epoch: 958, cost 16.15 s
2023-12-18 05:21:11,428	44k	INFO	====> Epoch: 959, cost 16.25 s
2023-12-18 05:21:20,959	44k	INFO	Train Epoch: 960 [27%]
2023-12-18 05:21:20,959	44k	INFO	Losses: [2.119739294052124, 2.718965768814087, 10.586974143981934, 22.381820678710938, 0.5612308382987976], step: 14400, lr: 8.868029200613832e-05, reference_loss: 38.36872863769531
2023-12-18 05:21:26,251	44k	INFO	Saving model and optimizer state at iteration 960 to ./logs\44k\G_14400.pth
2023-12-18 05:21:27,553	44k	INFO	Saving model and optimizer state at iteration 960 to ./logs\44k\D_14400.pth
2023-12-18 05:21:31,405	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_6400.pth
2023-12-18 05:21:31,405	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_6400.pth
2023-12-18 05:21:38,739	44k	INFO	====> Epoch: 960, cost 27.31 s
2023-12-18 05:21:55,205	44k	INFO	====> Epoch: 961, cost 16.47 s
2023-12-18 05:22:11,761	44k	INFO	====> Epoch: 962, cost 16.56 s
2023-12-18 05:22:28,137	44k	INFO	====> Epoch: 963, cost 16.38 s
2023-12-18 05:22:44,398	44k	INFO	====> Epoch: 964, cost 16.26 s
2023-12-18 05:23:00,729	44k	INFO	====> Epoch: 965, cost 16.33 s
2023-12-18 05:23:16,956	44k	INFO	====> Epoch: 966, cost 16.23 s
2023-12-18 05:23:33,131	44k	INFO	====> Epoch: 967, cost 16.18 s
2023-12-18 05:23:49,274	44k	INFO	====> Epoch: 968, cost 16.14 s
2023-12-18 05:24:05,310	44k	INFO	====> Epoch: 969, cost 16.04 s
2023-12-18 05:24:21,403	44k	INFO	====> Epoch: 970, cost 16.09 s
2023-12-18 05:24:37,553	44k	INFO	====> Epoch: 971, cost 16.15 s
2023-12-18 05:24:53,782	44k	INFO	====> Epoch: 972, cost 16.23 s
2023-12-18 05:25:06,588	44k	INFO	Train Epoch: 973 [60%]
2023-12-18 05:25:06,588	44k	INFO	Losses: [2.1153931617736816, 2.83221697807312, 10.71894359588623, 23.82561683654785, 0.7411358952522278], step: 14600, lr: 8.853629456121339e-05, reference_loss: 40.233306884765625
2023-12-18 05:25:10,771	44k	INFO	====> Epoch: 973, cost 16.99 s
2023-12-18 05:25:26,872	44k	INFO	====> Epoch: 974, cost 16.10 s
2023-12-18 05:25:43,338	44k	INFO	====> Epoch: 975, cost 16.47 s
2023-12-18 05:25:59,492	44k	INFO	====> Epoch: 976, cost 16.15 s
2023-12-18 05:26:15,715	44k	INFO	====> Epoch: 977, cost 16.22 s
2023-12-18 05:26:31,884	44k	INFO	====> Epoch: 978, cost 16.17 s
2023-12-18 05:26:48,140	44k	INFO	====> Epoch: 979, cost 16.26 s
2023-12-18 05:27:04,317	44k	INFO	====> Epoch: 980, cost 16.18 s
2023-12-18 05:27:20,452	44k	INFO	====> Epoch: 981, cost 16.13 s
2023-12-18 05:27:36,734	44k	INFO	====> Epoch: 982, cost 16.28 s
2023-12-18 05:27:52,897	44k	INFO	====> Epoch: 983, cost 16.16 s
2023-12-18 05:28:09,078	44k	INFO	====> Epoch: 984, cost 16.18 s
2023-12-18 05:28:25,376	44k	INFO	====> Epoch: 985, cost 16.30 s
2023-12-18 05:28:40,986	44k	INFO	Train Epoch: 986 [93%]
2023-12-18 05:28:40,986	44k	INFO	Losses: [1.8821439743041992, 3.204425096511841, 11.332779884338379, 19.23809814453125, 0.533846378326416], step: 14800, lr: 8.839253093672e-05, reference_loss: 36.1912956237793
2023-12-18 05:28:41,991	44k	INFO	====> Epoch: 986, cost 16.61 s
2023-12-18 05:28:58,280	44k	INFO	====> Epoch: 987, cost 16.29 s
2023-12-18 05:29:14,497	44k	INFO	====> Epoch: 988, cost 16.22 s
2023-12-18 05:29:30,603	44k	INFO	====> Epoch: 989, cost 16.11 s
2023-12-18 05:29:46,712	44k	INFO	====> Epoch: 990, cost 16.10 s
2023-12-18 05:30:02,841	44k	INFO	====> Epoch: 991, cost 16.14 s
2023-12-18 05:30:18,890	44k	INFO	====> Epoch: 992, cost 16.05 s
2023-12-18 05:30:35,219	44k	INFO	====> Epoch: 993, cost 16.33 s
2023-12-18 05:30:51,468	44k	INFO	====> Epoch: 994, cost 16.25 s
2023-12-18 05:31:07,648	44k	INFO	====> Epoch: 995, cost 16.18 s
2023-12-18 05:31:23,774	44k	INFO	====> Epoch: 996, cost 16.13 s
2023-12-18 05:31:39,878	44k	INFO	====> Epoch: 997, cost 16.10 s
2023-12-18 05:31:56,020	44k	INFO	====> Epoch: 998, cost 16.14 s
2023-12-18 05:32:12,222	44k	INFO	====> Epoch: 999, cost 16.20 s
2023-12-18 05:32:21,987	44k	INFO	Train Epoch: 1000 [27%]
2023-12-18 05:32:21,987	44k	INFO	Losses: [2.059866189956665, 2.775845527648926, 9.863354682922363, 20.497215270996094, 0.795164942741394], step: 15000, lr: 8.823796962789062e-05, reference_loss: 35.99144744873047
2023-12-18 05:32:29,195	44k	INFO	====> Epoch: 1000, cost 16.97 s
2023-12-18 05:32:45,569	44k	INFO	====> Epoch: 1001, cost 16.37 s
2023-12-18 05:33:01,780	44k	INFO	====> Epoch: 1002, cost 16.21 s
2023-12-18 05:33:17,920	44k	INFO	====> Epoch: 1003, cost 16.14 s
2023-12-18 05:33:34,130	44k	INFO	====> Epoch: 1004, cost 16.21 s
2023-12-18 05:33:50,385	44k	INFO	====> Epoch: 1005, cost 16.25 s
2023-12-18 05:34:06,590	44k	INFO	====> Epoch: 1006, cost 16.21 s
2023-12-18 05:34:22,775	44k	INFO	====> Epoch: 1007, cost 16.18 s
2023-12-18 05:34:38,956	44k	INFO	====> Epoch: 1008, cost 16.18 s
2023-12-18 05:34:55,206	44k	INFO	====> Epoch: 1009, cost 16.25 s
2023-12-18 05:35:11,546	44k	INFO	====> Epoch: 1010, cost 16.34 s
2023-12-18 05:35:28,196	44k	INFO	====> Epoch: 1011, cost 16.65 s
2023-12-18 05:35:44,491	44k	INFO	====> Epoch: 1012, cost 16.29 s
2023-12-18 05:35:57,239	44k	INFO	Train Epoch: 1013 [60%]
2023-12-18 05:35:57,239	44k	INFO	Losses: [2.212512731552124, 2.9520888328552246, 8.964977264404297, 19.329120635986328, 1.3261667490005493], step: 15200, lr: 8.809469041799697e-05, reference_loss: 34.78486633300781
2023-12-18 05:36:02,533	44k	INFO	Saving model and optimizer state at iteration 1013 to ./logs\44k\G_15200.pth
2023-12-18 05:36:03,648	44k	INFO	Saving model and optimizer state at iteration 1013 to ./logs\44k\D_15200.pth
2023-12-18 05:36:08,447	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_7200.pth
2023-12-18 05:36:08,447	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_7200.pth
2023-12-18 05:36:12,467	44k	INFO	====> Epoch: 1013, cost 27.98 s
2023-12-18 05:36:29,399	44k	INFO	====> Epoch: 1014, cost 16.93 s
2023-12-18 05:36:45,728	44k	INFO	====> Epoch: 1015, cost 16.33 s
2023-12-18 05:37:02,118	44k	INFO	====> Epoch: 1016, cost 16.39 s
2023-12-18 05:37:18,326	44k	INFO	====> Epoch: 1017, cost 16.21 s
2023-12-18 05:37:34,651	44k	INFO	====> Epoch: 1018, cost 16.33 s
2023-12-18 05:37:50,774	44k	INFO	====> Epoch: 1019, cost 16.12 s
2023-12-18 05:38:07,049	44k	INFO	====> Epoch: 1020, cost 16.28 s
2023-12-18 05:38:23,433	44k	INFO	====> Epoch: 1021, cost 16.38 s
2023-12-18 05:38:39,601	44k	INFO	====> Epoch: 1022, cost 16.17 s
2023-12-18 05:38:55,807	44k	INFO	====> Epoch: 1023, cost 16.21 s
2023-12-18 05:39:11,979	44k	INFO	====> Epoch: 1024, cost 16.17 s
2023-12-18 05:39:28,323	44k	INFO	====> Epoch: 1025, cost 16.34 s
2023-12-18 05:39:44,145	44k	INFO	Train Epoch: 1026 [93%]
2023-12-18 05:39:44,145	44k	INFO	Losses: [1.8876391649246216, 3.0399537086486816, 9.734643936157227, 20.899738311767578, 0.663930356502533], step: 15400, lr: 8.795164386227784e-05, reference_loss: 36.22590255737305
2023-12-18 05:39:45,233	44k	INFO	====> Epoch: 1026, cost 16.91 s
2023-12-18 05:40:01,531	44k	INFO	====> Epoch: 1027, cost 16.30 s
2023-12-18 05:40:17,948	44k	INFO	====> Epoch: 1028, cost 16.42 s
2023-12-18 05:40:34,232	44k	INFO	====> Epoch: 1029, cost 16.28 s
2023-12-18 05:40:50,526	44k	INFO	====> Epoch: 1030, cost 16.29 s
2023-12-18 05:41:06,694	44k	INFO	====> Epoch: 1031, cost 16.17 s
2023-12-18 05:41:23,233	44k	INFO	====> Epoch: 1032, cost 16.54 s
2023-12-18 05:41:39,373	44k	INFO	====> Epoch: 1033, cost 16.14 s
2023-12-18 05:41:55,675	44k	INFO	====> Epoch: 1034, cost 16.30 s
2023-12-18 05:42:11,764	44k	INFO	====> Epoch: 1035, cost 16.09 s
2023-12-18 05:42:27,948	44k	INFO	====> Epoch: 1036, cost 16.18 s
2023-12-18 05:42:44,260	44k	INFO	====> Epoch: 1037, cost 16.31 s
2023-12-18 05:43:00,533	44k	INFO	====> Epoch: 1038, cost 16.27 s
2023-12-18 05:43:17,009	44k	INFO	====> Epoch: 1039, cost 16.48 s
2023-12-18 05:43:26,520	44k	INFO	Train Epoch: 1040 [27%]
2023-12-18 05:43:26,520	44k	INFO	Losses: [2.1083412170410156, 2.8425333499908447, 10.715215682983398, 22.113059997558594, 0.6594805121421814], step: 15600, lr: 8.779785347925579e-05, reference_loss: 38.43863296508789
2023-12-18 05:43:33,673	44k	INFO	====> Epoch: 1040, cost 16.66 s
2023-12-18 05:43:49,902	44k	INFO	====> Epoch: 1041, cost 16.23 s
2023-12-18 05:44:06,168	44k	INFO	====> Epoch: 1042, cost 16.27 s
2023-12-18 05:44:22,396	44k	INFO	====> Epoch: 1043, cost 16.23 s
2023-12-18 05:44:38,529	44k	INFO	====> Epoch: 1044, cost 16.13 s
2023-12-18 05:44:54,755	44k	INFO	====> Epoch: 1045, cost 16.23 s
2023-12-18 05:45:10,940	44k	INFO	====> Epoch: 1046, cost 16.19 s
2023-12-18 05:45:27,125	44k	INFO	====> Epoch: 1047, cost 16.18 s
2023-12-18 05:45:43,439	44k	INFO	====> Epoch: 1048, cost 16.31 s
2023-12-18 05:45:59,571	44k	INFO	====> Epoch: 1049, cost 16.13 s
2023-12-18 05:46:15,592	44k	INFO	====> Epoch: 1050, cost 16.02 s
2023-12-18 05:46:32,178	44k	INFO	====> Epoch: 1051, cost 16.59 s
2023-12-18 05:46:48,451	44k	INFO	====> Epoch: 1052, cost 16.27 s
2023-12-18 05:47:01,179	44k	INFO	Train Epoch: 1053 [60%]
2023-12-18 05:47:01,179	44k	INFO	Losses: [2.1774704456329346, 2.847099781036377, 11.837100982666016, 23.386157989501953, 0.8974283337593079], step: 15800, lr: 8.765528892195788e-05, reference_loss: 41.14525604248047
2023-12-18 05:47:05,261	44k	INFO	====> Epoch: 1053, cost 16.81 s
2023-12-18 05:47:21,488	44k	INFO	====> Epoch: 1054, cost 16.23 s
2023-12-18 05:47:37,884	44k	INFO	====> Epoch: 1055, cost 16.40 s
2023-12-18 05:47:54,136	44k	INFO	====> Epoch: 1056, cost 16.25 s
2023-12-18 05:48:10,402	44k	INFO	====> Epoch: 1057, cost 16.27 s
2023-12-18 05:48:26,681	44k	INFO	====> Epoch: 1058, cost 16.28 s
2023-12-18 05:48:42,861	44k	INFO	====> Epoch: 1059, cost 16.18 s
2023-12-18 05:48:59,107	44k	INFO	====> Epoch: 1060, cost 16.25 s
2023-12-18 05:49:15,378	44k	INFO	====> Epoch: 1061, cost 16.27 s
2023-12-18 05:49:31,660	44k	INFO	====> Epoch: 1062, cost 16.28 s
2023-12-18 05:49:47,860	44k	INFO	====> Epoch: 1063, cost 16.20 s
2023-12-18 05:50:04,172	44k	INFO	====> Epoch: 1064, cost 16.31 s
2023-12-18 05:50:20,389	44k	INFO	====> Epoch: 1065, cost 16.22 s
2023-12-18 05:50:36,256	44k	INFO	Train Epoch: 1066 [93%]
2023-12-18 05:50:36,256	44k	INFO	Losses: [1.6845853328704834, 3.0176143646240234, 12.826883316040039, 21.84742546081543, 0.513529896736145], step: 16000, lr: 8.751295585839462e-05, reference_loss: 39.89004135131836
2023-12-18 05:50:41,507	44k	INFO	Saving model and optimizer state at iteration 1066 to ./logs\44k\G_16000.pth
2023-12-18 05:50:42,587	44k	INFO	Saving model and optimizer state at iteration 1066 to ./logs\44k\D_16000.pth
2023-12-18 05:50:49,816	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_8000.pth
2023-12-18 05:50:49,816	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_8000.pth
2023-12-18 05:50:50,401	44k	INFO	====> Epoch: 1066, cost 30.01 s
2023-12-18 05:51:07,373	44k	INFO	====> Epoch: 1067, cost 16.97 s
2023-12-18 05:51:23,980	44k	INFO	====> Epoch: 1068, cost 16.61 s
2023-12-18 05:51:40,157	44k	INFO	====> Epoch: 1069, cost 16.18 s
2023-12-18 05:51:56,451	44k	INFO	====> Epoch: 1070, cost 16.29 s
2023-12-18 05:52:12,517	44k	INFO	====> Epoch: 1071, cost 16.07 s
2023-12-18 05:52:28,881	44k	INFO	====> Epoch: 1072, cost 16.36 s
2023-12-18 05:52:45,097	44k	INFO	====> Epoch: 1073, cost 16.22 s
2023-12-18 05:53:01,357	44k	INFO	====> Epoch: 1074, cost 16.26 s
2023-12-18 05:53:17,595	44k	INFO	====> Epoch: 1075, cost 16.24 s
2023-12-18 05:53:33,954	44k	INFO	====> Epoch: 1076, cost 16.36 s
2023-12-18 05:53:50,240	44k	INFO	====> Epoch: 1077, cost 16.29 s
2023-12-18 05:54:06,518	44k	INFO	====> Epoch: 1078, cost 16.28 s
2023-12-18 05:54:22,970	44k	INFO	====> Epoch: 1079, cost 16.45 s
2023-12-18 05:54:32,597	44k	INFO	Train Epoch: 1080 [27%]
2023-12-18 05:54:32,597	44k	INFO	Losses: [2.133018970489502, 2.7093684673309326, 9.334502220153809, 20.1745548248291, 0.496013343334198], step: 16200, lr: 8.735993255593163e-05, reference_loss: 34.84745788574219
2023-12-18 05:54:39,751	44k	INFO	====> Epoch: 1080, cost 16.78 s
2023-12-18 05:54:56,159	44k	INFO	====> Epoch: 1081, cost 16.41 s
2023-12-18 05:55:12,629	44k	INFO	====> Epoch: 1082, cost 16.47 s
2023-12-18 05:55:28,960	44k	INFO	====> Epoch: 1083, cost 16.33 s
2023-12-18 05:55:45,396	44k	INFO	====> Epoch: 1084, cost 16.44 s
2023-12-18 05:56:01,764	44k	INFO	====> Epoch: 1085, cost 16.37 s
2023-12-18 05:56:17,943	44k	INFO	====> Epoch: 1086, cost 16.18 s
2023-12-18 05:56:34,035	44k	INFO	====> Epoch: 1087, cost 16.09 s
2023-12-18 05:56:50,371	44k	INFO	====> Epoch: 1088, cost 16.34 s
2023-12-18 05:57:06,700	44k	INFO	====> Epoch: 1089, cost 16.33 s
2023-12-18 05:57:22,862	44k	INFO	====> Epoch: 1090, cost 16.16 s
2023-12-18 05:57:39,126	44k	INFO	====> Epoch: 1091, cost 16.26 s
2023-12-18 05:57:55,636	44k	INFO	====> Epoch: 1092, cost 16.51 s
2023-12-18 05:58:08,397	44k	INFO	Train Epoch: 1093 [60%]
2023-12-18 05:58:08,397	44k	INFO	Losses: [2.3138749599456787, 2.750227451324463, 12.569123268127441, 22.78923797607422, 0.5938176512718201], step: 16400, lr: 8.721807908666253e-05, reference_loss: 41.01628112792969
2023-12-18 05:58:12,453	44k	INFO	====> Epoch: 1093, cost 16.82 s
2023-12-18 05:58:28,759	44k	INFO	====> Epoch: 1094, cost 16.31 s
2023-12-18 05:58:45,072	44k	INFO	====> Epoch: 1095, cost 16.31 s
2023-12-18 05:59:01,291	44k	INFO	====> Epoch: 1096, cost 16.22 s
2023-12-18 05:59:17,670	44k	INFO	====> Epoch: 1097, cost 16.38 s
2023-12-18 05:59:33,953	44k	INFO	====> Epoch: 1098, cost 16.28 s
2023-12-18 05:59:50,493	44k	INFO	====> Epoch: 1099, cost 16.54 s
2023-12-18 06:00:06,680	44k	INFO	====> Epoch: 1100, cost 16.19 s
2023-12-18 06:00:22,891	44k	INFO	====> Epoch: 1101, cost 16.21 s
2023-12-18 06:00:39,348	44k	INFO	====> Epoch: 1102, cost 16.46 s
2023-12-18 06:00:55,592	44k	INFO	====> Epoch: 1103, cost 16.24 s
2023-12-18 06:01:11,849	44k	INFO	====> Epoch: 1104, cost 16.26 s
2023-12-18 06:01:28,188	44k	INFO	====> Epoch: 1105, cost 16.34 s
2023-12-18 06:01:43,918	44k	INFO	Train Epoch: 1106 [93%]
2023-12-18 06:01:43,918	44k	INFO	Losses: [1.738747000694275, 3.5735418796539307, 12.602117538452148, 20.461223602294922, -0.10984014719724655], step: 16600, lr: 8.707645595647632e-05, reference_loss: 38.26578903198242
2023-12-18 06:01:44,926	44k	INFO	====> Epoch: 1106, cost 16.74 s
2023-12-18 06:02:01,277	44k	INFO	====> Epoch: 1107, cost 16.35 s
2023-12-18 06:02:17,491	44k	INFO	====> Epoch: 1108, cost 16.21 s
2023-12-18 06:02:34,070	44k	INFO	====> Epoch: 1109, cost 16.58 s
2023-12-18 06:02:50,399	44k	INFO	====> Epoch: 1110, cost 16.33 s
2023-12-18 06:03:06,660	44k	INFO	====> Epoch: 1111, cost 16.26 s
2023-12-18 06:03:22,784	44k	INFO	====> Epoch: 1112, cost 16.12 s
2023-12-18 06:03:39,158	44k	INFO	====> Epoch: 1113, cost 16.37 s
2023-12-18 06:03:55,573	44k	INFO	====> Epoch: 1114, cost 16.41 s
2023-12-18 06:04:11,768	44k	INFO	====> Epoch: 1115, cost 16.19 s
2023-12-18 06:04:27,949	44k	INFO	====> Epoch: 1116, cost 16.18 s
2023-12-18 06:04:44,193	44k	INFO	====> Epoch: 1117, cost 16.24 s
2023-12-18 06:05:00,548	44k	INFO	====> Epoch: 1118, cost 16.35 s
2023-12-18 06:05:16,808	44k	INFO	====> Epoch: 1119, cost 16.26 s
2023-12-18 06:05:26,368	44k	INFO	Train Epoch: 1120 [27%]
2023-12-18 06:05:26,368	44k	INFO	Losses: [2.218595504760742, 2.762629508972168, 9.027056694030762, 19.968494415283203, 0.48796916007995605], step: 16800, lr: 8.692419590850362e-05, reference_loss: 34.464744567871094
2023-12-18 06:05:31,747	44k	INFO	Saving model and optimizer state at iteration 1120 to ./logs\44k\G_16800.pth
2023-12-18 06:05:33,015	44k	INFO	Saving model and optimizer state at iteration 1120 to ./logs\44k\D_16800.pth
2023-12-18 06:05:40,565	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_8800.pth
2023-12-18 06:05:40,565	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_8800.pth
2023-12-18 06:05:47,804	44k	INFO	====> Epoch: 1120, cost 31.00 s
2023-12-18 06:06:04,191	44k	INFO	====> Epoch: 1121, cost 16.39 s
2023-12-18 06:06:20,498	44k	INFO	====> Epoch: 1122, cost 16.31 s
2023-12-18 06:06:36,619	44k	INFO	====> Epoch: 1123, cost 16.12 s
2023-12-18 06:06:52,996	44k	INFO	====> Epoch: 1124, cost 16.38 s
2023-12-18 06:07:09,224	44k	INFO	====> Epoch: 1125, cost 16.23 s
2023-12-18 06:07:25,513	44k	INFO	====> Epoch: 1126, cost 16.29 s
2023-12-18 06:07:41,656	44k	INFO	====> Epoch: 1127, cost 16.14 s
2023-12-18 06:07:57,731	44k	INFO	====> Epoch: 1128, cost 16.08 s
2023-12-18 06:08:14,123	44k	INFO	====> Epoch: 1129, cost 16.39 s
2023-12-18 06:08:30,290	44k	INFO	====> Epoch: 1130, cost 16.17 s
2023-12-18 06:08:46,413	44k	INFO	====> Epoch: 1131, cost 16.12 s
2023-12-18 06:09:02,585	44k	INFO	====> Epoch: 1132, cost 16.17 s
2023-12-18 06:09:15,376	44k	INFO	Train Epoch: 1133 [60%]
2023-12-18 06:09:15,376	44k	INFO	Losses: [2.0891776084899902, 3.027534246444702, 10.803962707519531, 23.576364517211914, 0.6100084781646729], step: 17000, lr: 8.678304998047589e-05, reference_loss: 40.10704803466797
2023-12-18 06:09:19,480	44k	INFO	====> Epoch: 1133, cost 16.89 s
2023-12-18 06:09:35,645	44k	INFO	====> Epoch: 1134, cost 16.17 s
2023-12-18 06:09:52,090	44k	INFO	====> Epoch: 1135, cost 16.44 s
2023-12-18 06:10:08,663	44k	INFO	====> Epoch: 1136, cost 16.57 s
2023-12-18 06:10:25,064	44k	INFO	====> Epoch: 1137, cost 16.40 s
2023-12-18 06:10:41,325	44k	INFO	====> Epoch: 1138, cost 16.26 s
2023-12-18 06:10:58,215	44k	INFO	====> Epoch: 1139, cost 16.89 s
2023-12-18 06:11:14,494	44k	INFO	====> Epoch: 1140, cost 16.28 s
2023-12-18 06:11:30,988	44k	INFO	====> Epoch: 1141, cost 16.49 s
2023-12-18 06:11:47,403	44k	INFO	====> Epoch: 1142, cost 16.42 s
2023-12-18 06:12:03,700	44k	INFO	====> Epoch: 1143, cost 16.30 s
2023-12-18 06:12:20,074	44k	INFO	====> Epoch: 1144, cost 16.37 s
2023-12-18 06:12:36,226	44k	INFO	====> Epoch: 1145, cost 16.15 s
2023-12-18 06:12:51,906	44k	INFO	Train Epoch: 1146 [93%]
2023-12-18 06:12:51,906	44k	INFO	Losses: [2.4534311294555664, 2.6070504188537598, 11.066351890563965, 24.765302658081055, 0.6896950006484985], step: 17200, lr: 8.664213324263843e-05, reference_loss: 41.58182907104492
2023-12-18 06:12:52,911	44k	INFO	====> Epoch: 1146, cost 16.68 s
2023-12-18 06:13:09,334	44k	INFO	====> Epoch: 1147, cost 16.42 s
2023-12-18 06:13:25,766	44k	INFO	====> Epoch: 1148, cost 16.43 s
2023-12-18 06:13:42,091	44k	INFO	====> Epoch: 1149, cost 16.32 s
2023-12-18 06:13:58,408	44k	INFO	====> Epoch: 1150, cost 16.32 s
2023-12-18 06:14:14,532	44k	INFO	====> Epoch: 1151, cost 16.12 s
2023-12-18 06:14:30,750	44k	INFO	====> Epoch: 1152, cost 16.22 s
2023-12-18 06:14:46,921	44k	INFO	====> Epoch: 1153, cost 16.17 s
2023-12-18 06:15:03,174	44k	INFO	====> Epoch: 1154, cost 16.25 s
2023-12-18 06:15:19,415	44k	INFO	====> Epoch: 1155, cost 16.24 s
2023-12-18 06:15:35,867	44k	INFO	====> Epoch: 1156, cost 16.45 s
2023-12-18 06:15:52,246	44k	INFO	====> Epoch: 1157, cost 16.38 s
2023-12-18 06:16:08,569	44k	INFO	====> Epoch: 1158, cost 16.32 s
2023-12-18 06:16:24,855	44k	INFO	====> Epoch: 1159, cost 16.29 s
2023-12-18 06:16:34,523	44k	INFO	Train Epoch: 1160 [27%]
2023-12-18 06:16:34,523	44k	INFO	Losses: [2.130260705947876, 3.216271162033081, 10.654054641723633, 21.04338264465332, 0.7342672348022461], step: 17400, lr: 8.649063264217098e-05, reference_loss: 37.778236389160156
2023-12-18 06:16:41,681	44k	INFO	====> Epoch: 1160, cost 16.83 s
2023-12-18 06:16:57,956	44k	INFO	====> Epoch: 1161, cost 16.27 s
2023-12-18 06:17:14,469	44k	INFO	====> Epoch: 1162, cost 16.51 s
2023-12-18 06:17:30,937	44k	INFO	====> Epoch: 1163, cost 16.47 s
2023-12-18 06:17:47,049	44k	INFO	====> Epoch: 1164, cost 16.11 s
2023-12-18 06:18:03,261	44k	INFO	====> Epoch: 1165, cost 16.21 s
2023-12-18 06:18:19,609	44k	INFO	====> Epoch: 1166, cost 16.35 s
2023-12-18 06:18:35,937	44k	INFO	====> Epoch: 1167, cost 16.33 s
2023-12-18 06:18:52,224	44k	INFO	====> Epoch: 1168, cost 16.29 s
2023-12-18 06:19:08,605	44k	INFO	====> Epoch: 1169, cost 16.38 s
2023-12-18 06:19:24,970	44k	INFO	====> Epoch: 1170, cost 16.36 s
2023-12-18 06:19:41,286	44k	INFO	====> Epoch: 1171, cost 16.32 s
2023-12-18 06:19:57,628	44k	INFO	====> Epoch: 1172, cost 16.34 s
2023-12-18 06:20:10,369	44k	INFO	Train Epoch: 1173 [60%]
2023-12-18 06:20:10,369	44k	INFO	Losses: [2.26151967048645, 2.9894022941589355, 11.47362995147705, 23.037372589111328, 0.8677698373794556], step: 17600, lr: 8.635019072628792e-05, reference_loss: 40.629695892333984
2023-12-18 06:20:15,654	44k	INFO	Saving model and optimizer state at iteration 1173 to ./logs\44k\G_17600.pth
2023-12-18 06:20:16,993	44k	INFO	Saving model and optimizer state at iteration 1173 to ./logs\44k\D_17600.pth
2023-12-18 06:20:23,158	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_9600.pth
2023-12-18 06:20:23,158	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_9600.pth
2023-12-18 06:20:27,200	44k	INFO	====> Epoch: 1173, cost 29.57 s
2023-12-18 06:20:43,794	44k	INFO	====> Epoch: 1174, cost 16.59 s
2023-12-18 06:21:00,262	44k	INFO	====> Epoch: 1175, cost 16.47 s
2023-12-18 06:21:16,641	44k	INFO	====> Epoch: 1176, cost 16.38 s
2023-12-18 06:21:33,463	44k	INFO	====> Epoch: 1177, cost 16.82 s
2023-12-18 06:21:50,055	44k	INFO	====> Epoch: 1178, cost 16.59 s
2023-12-18 06:22:06,502	44k	INFO	====> Epoch: 1179, cost 16.45 s
2023-12-18 06:22:22,862	44k	INFO	====> Epoch: 1180, cost 16.36 s
2023-12-18 06:22:39,108	44k	INFO	====> Epoch: 1181, cost 16.25 s
2023-12-18 06:22:55,318	44k	INFO	====> Epoch: 1182, cost 16.21 s
2023-12-18 06:23:11,684	44k	INFO	====> Epoch: 1183, cost 16.37 s
2023-12-18 06:23:27,902	44k	INFO	====> Epoch: 1184, cost 16.22 s
2023-12-18 06:23:44,255	44k	INFO	====> Epoch: 1185, cost 16.35 s
2023-12-18 06:24:00,191	44k	INFO	Train Epoch: 1186 [93%]
2023-12-18 06:24:00,191	44k	INFO	Losses: [2.168531656265259, 3.1336638927459717, 8.851216316223145, 16.01417350769043, 1.0383952856063843], step: 17800, lr: 8.620997685743301e-05, reference_loss: 31.20598030090332
2023-12-18 06:24:01,186	44k	INFO	====> Epoch: 1186, cost 16.93 s
2023-12-18 06:24:17,478	44k	INFO	====> Epoch: 1187, cost 16.29 s
2023-12-18 06:24:33,804	44k	INFO	====> Epoch: 1188, cost 16.33 s
2023-12-18 06:24:50,133	44k	INFO	====> Epoch: 1189, cost 16.33 s
2023-12-18 06:25:06,564	44k	INFO	====> Epoch: 1190, cost 16.43 s
2023-12-18 06:25:22,789	44k	INFO	====> Epoch: 1191, cost 16.22 s
2023-12-18 06:25:39,024	44k	INFO	====> Epoch: 1192, cost 16.24 s
2023-12-18 06:25:55,265	44k	INFO	====> Epoch: 1193, cost 16.24 s
2023-12-18 06:26:11,577	44k	INFO	====> Epoch: 1194, cost 16.31 s
2023-12-18 06:26:28,160	44k	INFO	====> Epoch: 1195, cost 16.58 s
2023-12-18 06:26:44,363	44k	INFO	====> Epoch: 1196, cost 16.20 s
2023-12-18 06:27:00,740	44k	INFO	====> Epoch: 1197, cost 16.38 s
2023-12-18 06:27:17,199	44k	INFO	====> Epoch: 1198, cost 16.46 s
2023-12-18 06:27:33,650	44k	INFO	====> Epoch: 1199, cost 16.45 s
2023-12-18 06:27:43,331	44k	INFO	Train Epoch: 1200 [27%]
2023-12-18 06:27:43,331	44k	INFO	Losses: [2.088735342025757, 2.6107234954833984, 11.18794059753418, 20.640644073486328, 0.7308809161186218], step: 18000, lr: 8.605923191647444e-05, reference_loss: 37.25892639160156
2023-12-18 06:27:50,525	44k	INFO	====> Epoch: 1200, cost 16.88 s
2023-12-18 06:28:06,979	44k	INFO	====> Epoch: 1201, cost 16.45 s
2023-12-18 06:28:23,254	44k	INFO	====> Epoch: 1202, cost 16.28 s
2023-12-18 06:28:39,699	44k	INFO	====> Epoch: 1203, cost 16.44 s
2023-12-18 06:28:56,087	44k	INFO	====> Epoch: 1204, cost 16.39 s
2023-12-18 06:29:12,346	44k	INFO	====> Epoch: 1205, cost 16.26 s
2023-12-18 06:29:28,572	44k	INFO	====> Epoch: 1206, cost 16.23 s
2023-12-18 06:29:44,955	44k	INFO	====> Epoch: 1207, cost 16.38 s
2023-12-18 06:30:01,323	44k	INFO	====> Epoch: 1208, cost 16.37 s
2023-12-18 06:30:17,768	44k	INFO	====> Epoch: 1209, cost 16.45 s
2023-12-18 06:30:34,223	44k	INFO	====> Epoch: 1210, cost 16.45 s
2023-12-18 06:30:50,767	44k	INFO	====> Epoch: 1211, cost 16.54 s
2023-12-18 06:31:07,058	44k	INFO	====> Epoch: 1212, cost 16.29 s
2023-12-18 06:31:19,931	44k	INFO	Train Epoch: 1213 [60%]
2023-12-18 06:31:19,931	44k	INFO	Losses: [2.028057098388672, 2.8344717025756836, 9.369321823120117, 19.576229095458984, 0.7934724688529968], step: 18200, lr: 8.591949050124189e-05, reference_loss: 34.6015510559082
2023-12-18 06:31:24,056	44k	INFO	====> Epoch: 1213, cost 17.00 s
2023-12-18 06:31:40,317	44k	INFO	====> Epoch: 1214, cost 16.26 s
2023-12-18 06:31:56,661	44k	INFO	====> Epoch: 1215, cost 16.34 s
2023-12-18 06:32:12,954	44k	INFO	====> Epoch: 1216, cost 16.29 s
2023-12-18 06:32:29,423	44k	INFO	====> Epoch: 1217, cost 16.47 s
2023-12-18 06:32:45,955	44k	INFO	====> Epoch: 1218, cost 16.53 s
2023-12-18 06:33:02,267	44k	INFO	====> Epoch: 1219, cost 16.31 s
2023-12-18 06:33:18,697	44k	INFO	====> Epoch: 1220, cost 16.43 s
2023-12-18 06:33:35,102	44k	INFO	====> Epoch: 1221, cost 16.40 s
2023-12-18 06:33:51,461	44k	INFO	====> Epoch: 1222, cost 16.36 s
2023-12-18 06:34:07,843	44k	INFO	====> Epoch: 1223, cost 16.38 s
2023-12-18 06:34:24,286	44k	INFO	====> Epoch: 1224, cost 16.44 s
2023-12-18 06:34:40,665	44k	INFO	====> Epoch: 1225, cost 16.38 s
2023-12-18 06:34:56,533	44k	INFO	Train Epoch: 1226 [93%]
2023-12-18 06:34:56,533	44k	INFO	Losses: [2.3795242309570312, 2.5027527809143066, 10.052430152893066, 18.268102645874023, 0.3964497148990631], step: 18400, lr: 8.577997599557726e-05, reference_loss: 33.59926223754883
2023-12-18 06:35:01,804	44k	INFO	Saving model and optimizer state at iteration 1226 to ./logs\44k\G_18400.pth
2023-12-18 06:35:02,964	44k	INFO	Saving model and optimizer state at iteration 1226 to ./logs\44k\D_18400.pth
2023-12-18 06:35:07,201	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_10400.pth
2023-12-18 06:35:07,201	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_10400.pth
2023-12-18 06:35:07,746	44k	INFO	====> Epoch: 1226, cost 27.08 s
2023-12-18 06:35:25,621	44k	INFO	====> Epoch: 1227, cost 17.88 s
2023-12-18 06:35:41,999	44k	INFO	====> Epoch: 1228, cost 16.38 s
2023-12-18 06:35:58,221	44k	INFO	====> Epoch: 1229, cost 16.22 s
2023-12-18 06:36:14,619	44k	INFO	====> Epoch: 1230, cost 16.40 s
2023-12-18 06:36:30,981	44k	INFO	====> Epoch: 1231, cost 16.36 s
2023-12-18 06:36:47,426	44k	INFO	====> Epoch: 1232, cost 16.44 s
2023-12-18 06:37:03,720	44k	INFO	====> Epoch: 1233, cost 16.29 s
2023-12-18 06:37:20,265	44k	INFO	====> Epoch: 1234, cost 16.54 s
2023-12-18 06:37:36,604	44k	INFO	====> Epoch: 1235, cost 16.34 s
2023-12-18 06:37:52,773	44k	INFO	====> Epoch: 1236, cost 16.17 s
2023-12-18 06:38:09,029	44k	INFO	====> Epoch: 1237, cost 16.26 s
2023-12-18 06:38:25,362	44k	INFO	====> Epoch: 1238, cost 16.33 s
2023-12-18 06:38:41,651	44k	INFO	====> Epoch: 1239, cost 16.29 s
2023-12-18 06:38:51,360	44k	INFO	Train Epoch: 1240 [27%]
2023-12-18 06:38:51,360	44k	INFO	Losses: [2.323397636413574, 2.7230424880981445, 9.150565147399902, 20.704212188720703, 0.37942272424697876], step: 18600, lr: 8.562998294502507e-05, reference_loss: 35.2806396484375
2023-12-18 06:38:58,537	44k	INFO	====> Epoch: 1240, cost 16.89 s
2023-12-18 06:39:14,740	44k	INFO	====> Epoch: 1241, cost 16.20 s
2023-12-18 06:39:31,057	44k	INFO	====> Epoch: 1242, cost 16.32 s
2023-12-18 06:39:47,430	44k	INFO	====> Epoch: 1243, cost 16.37 s
2023-12-18 06:40:03,946	44k	INFO	====> Epoch: 1244, cost 16.52 s
2023-12-18 06:40:20,226	44k	INFO	====> Epoch: 1245, cost 16.28 s
2023-12-18 06:40:36,473	44k	INFO	====> Epoch: 1246, cost 16.25 s
2023-12-18 06:40:52,884	44k	INFO	====> Epoch: 1247, cost 16.41 s
2023-12-18 06:41:09,309	44k	INFO	====> Epoch: 1248, cost 16.43 s
2023-12-18 06:41:25,478	44k	INFO	====> Epoch: 1249, cost 16.17 s
2023-12-18 06:41:41,863	44k	INFO	====> Epoch: 1250, cost 16.39 s
2023-12-18 06:41:58,054	44k	INFO	====> Epoch: 1251, cost 16.19 s
2023-12-18 06:42:14,305	44k	INFO	====> Epoch: 1252, cost 16.25 s
2023-12-18 06:42:27,133	44k	INFO	Train Epoch: 1253 [60%]
2023-12-18 06:42:27,133	44k	INFO	Losses: [2.0730786323547363, 2.7422306537628174, 10.379049301147461, 20.902223587036133, 0.534008264541626], step: 18800, lr: 8.549093853646363e-05, reference_loss: 36.63058853149414
2023-12-18 06:42:31,192	44k	INFO	====> Epoch: 1253, cost 16.89 s
2023-12-18 06:42:47,563	44k	INFO	====> Epoch: 1254, cost 16.37 s
2023-12-18 06:43:03,941	44k	INFO	====> Epoch: 1255, cost 16.38 s
2023-12-18 06:43:20,200	44k	INFO	====> Epoch: 1256, cost 16.26 s
2023-12-18 06:43:36,634	44k	INFO	====> Epoch: 1257, cost 16.43 s
2023-12-18 06:43:53,139	44k	INFO	====> Epoch: 1258, cost 16.51 s
2023-12-18 06:44:09,380	44k	INFO	====> Epoch: 1259, cost 16.24 s
2023-12-18 06:44:25,669	44k	INFO	====> Epoch: 1260, cost 16.29 s
2023-12-18 06:44:42,025	44k	INFO	====> Epoch: 1261, cost 16.36 s
2023-12-18 06:44:58,401	44k	INFO	====> Epoch: 1262, cost 16.38 s
2023-12-18 06:45:14,723	44k	INFO	====> Epoch: 1263, cost 16.32 s
2023-12-18 06:45:31,016	44k	INFO	====> Epoch: 1264, cost 16.29 s
2023-12-18 06:45:47,368	44k	INFO	====> Epoch: 1265, cost 16.35 s
2023-12-18 06:46:03,312	44k	INFO	Train Epoch: 1266 [93%]
2023-12-18 06:46:03,312	44k	INFO	Losses: [1.8506581783294678, 2.8672995567321777, 11.080596923828125, 20.960647583007812, 0.9160330295562744], step: 19000, lr: 8.535211990568338e-05, reference_loss: 37.675235748291016
2023-12-18 06:46:04,378	44k	INFO	====> Epoch: 1266, cost 17.01 s
2023-12-18 06:46:20,733	44k	INFO	====> Epoch: 1267, cost 16.36 s
2023-12-18 06:46:37,034	44k	INFO	====> Epoch: 1268, cost 16.30 s
2023-12-18 06:46:53,343	44k	INFO	====> Epoch: 1269, cost 16.31 s
2023-12-18 06:47:09,676	44k	INFO	====> Epoch: 1270, cost 16.33 s
2023-12-18 06:47:26,241	44k	INFO	====> Epoch: 1271, cost 16.57 s
2023-12-18 06:47:42,580	44k	INFO	====> Epoch: 1272, cost 16.34 s
2023-12-18 06:47:59,031	44k	INFO	====> Epoch: 1273, cost 16.45 s
2023-12-18 06:48:15,428	44k	INFO	====> Epoch: 1274, cost 16.40 s
2023-12-18 06:48:31,746	44k	INFO	====> Epoch: 1275, cost 16.32 s
2023-12-18 06:48:48,065	44k	INFO	====> Epoch: 1276, cost 16.32 s
2023-12-18 06:49:04,584	44k	INFO	====> Epoch: 1277, cost 16.52 s
2023-12-18 06:49:20,928	44k	INFO	====> Epoch: 1278, cost 16.34 s
2023-12-18 06:49:37,157	44k	INFO	====> Epoch: 1279, cost 16.23 s
2023-12-18 06:49:46,769	44k	INFO	Train Epoch: 1280 [27%]
2023-12-18 06:49:46,769	44k	INFO	Losses: [2.0041909217834473, 2.7132248878479004, 10.882377624511719, 25.7646427154541, 0.5638467669487], step: 19200, lr: 8.52028749952347e-05, reference_loss: 41.92828369140625
2023-12-18 06:49:52,158	44k	INFO	Saving model and optimizer state at iteration 1280 to ./logs\44k\G_19200.pth
2023-12-18 06:49:53,347	44k	INFO	Saving model and optimizer state at iteration 1280 to ./logs\44k\D_19200.pth
2023-12-18 06:49:58,080	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_11200.pth
2023-12-18 06:49:58,080	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_11200.pth
2023-12-18 06:50:05,644	44k	INFO	====> Epoch: 1280, cost 28.49 s
2023-12-18 06:50:23,495	44k	INFO	====> Epoch: 1281, cost 17.85 s
2023-12-18 06:50:43,256	44k	INFO	====> Epoch: 1282, cost 19.76 s
2023-12-18 06:51:02,860	44k	INFO	====> Epoch: 1283, cost 19.60 s
2023-12-18 06:51:22,237	44k	INFO	====> Epoch: 1284, cost 19.38 s
2023-12-18 06:51:41,205	44k	INFO	====> Epoch: 1285, cost 18.97 s
2023-12-18 06:52:00,510	44k	INFO	====> Epoch: 1286, cost 19.31 s
2023-12-18 06:52:19,714	44k	INFO	====> Epoch: 1287, cost 19.20 s
2023-12-18 06:52:38,541	44k	INFO	====> Epoch: 1288, cost 18.83 s
2023-12-18 06:52:57,482	44k	INFO	====> Epoch: 1289, cost 18.94 s
2023-12-18 06:53:15,895	44k	INFO	====> Epoch: 1290, cost 18.41 s
2023-12-18 06:53:35,247	44k	INFO	====> Epoch: 1291, cost 19.35 s
2023-12-18 06:53:53,475	44k	INFO	====> Epoch: 1292, cost 18.23 s
2023-12-18 06:54:08,216	44k	INFO	Train Epoch: 1293 [60%]
2023-12-18 06:54:08,216	44k	INFO	Losses: [2.2594776153564453, 2.5694639682769775, 10.90573501586914, 22.7269229888916, 0.6819525957107544], step: 19400, lr: 8.506452411679236e-05, reference_loss: 39.1435546875
2023-12-18 06:54:12,791	44k	INFO	====> Epoch: 1293, cost 19.32 s
2023-12-18 06:54:31,013	44k	INFO	====> Epoch: 1294, cost 18.22 s
2023-12-18 06:54:49,034	44k	INFO	====> Epoch: 1295, cost 18.02 s
2023-12-18 06:55:07,396	44k	INFO	====> Epoch: 1296, cost 18.36 s
2023-12-18 06:55:25,961	44k	INFO	====> Epoch: 1297, cost 18.57 s
2023-12-18 06:55:44,202	44k	INFO	====> Epoch: 1298, cost 18.24 s
2023-12-18 06:56:02,596	44k	INFO	====> Epoch: 1299, cost 18.39 s
2023-12-18 06:56:20,948	44k	INFO	====> Epoch: 1300, cost 18.35 s
2023-12-18 06:56:39,909	44k	INFO	====> Epoch: 1301, cost 18.96 s
2023-12-18 06:56:58,075	44k	INFO	====> Epoch: 1302, cost 18.17 s
2023-12-18 06:57:16,568	44k	INFO	====> Epoch: 1303, cost 18.49 s
2023-12-18 06:57:34,909	44k	INFO	====> Epoch: 1304, cost 18.34 s
2023-12-18 06:57:52,834	44k	INFO	====> Epoch: 1305, cost 17.93 s
2023-12-18 06:58:10,815	44k	INFO	Train Epoch: 1306 [93%]
2023-12-18 06:58:10,815	44k	INFO	Losses: [2.4444050788879395, 2.827528238296509, 5.222635746002197, 15.31334400177002, 0.24387672543525696], step: 19600, lr: 8.492639788998965e-05, reference_loss: 26.05179214477539
2023-12-18 06:58:12,019	44k	INFO	====> Epoch: 1306, cost 19.18 s
2023-12-18 06:58:31,163	44k	INFO	====> Epoch: 1307, cost 19.14 s
2023-12-18 06:58:49,892	44k	INFO	====> Epoch: 1308, cost 18.73 s
2023-12-18 06:59:08,355	44k	INFO	====> Epoch: 1309, cost 18.46 s
2023-12-18 06:59:27,309	44k	INFO	====> Epoch: 1310, cost 18.95 s
2023-12-18 06:59:45,826	44k	INFO	====> Epoch: 1311, cost 18.52 s
2023-12-18 07:00:04,030	44k	INFO	====> Epoch: 1312, cost 18.20 s
2023-12-18 07:00:22,694	44k	INFO	====> Epoch: 1313, cost 18.66 s
2023-12-18 07:00:41,358	44k	INFO	====> Epoch: 1314, cost 18.66 s
2023-12-18 07:01:00,647	44k	INFO	====> Epoch: 1315, cost 19.29 s
2023-12-18 07:01:18,957	44k	INFO	====> Epoch: 1316, cost 18.31 s
2023-12-18 07:01:37,598	44k	INFO	====> Epoch: 1317, cost 18.64 s
2023-12-18 07:01:56,350	44k	INFO	====> Epoch: 1318, cost 18.75 s
2023-12-18 07:02:14,874	44k	INFO	====> Epoch: 1319, cost 18.52 s
2023-12-18 07:02:26,230	44k	INFO	Train Epoch: 1320 [27%]
2023-12-18 07:02:26,230	44k	INFO	Losses: [1.9742059707641602, 2.920365571975708, 10.084603309631348, 21.356775283813477, 0.9709144234657288], step: 19800, lr: 8.477789738804749e-05, reference_loss: 37.306861877441406
2023-12-18 07:02:34,270	44k	INFO	====> Epoch: 1320, cost 19.40 s
2023-12-18 07:02:52,532	44k	INFO	====> Epoch: 1321, cost 18.26 s
2023-12-18 07:03:11,647	44k	INFO	====> Epoch: 1322, cost 19.12 s
2023-12-18 07:03:29,656	44k	INFO	====> Epoch: 1323, cost 18.01 s
2023-12-18 07:03:48,023	44k	INFO	====> Epoch: 1324, cost 18.37 s
2023-12-18 07:04:06,148	44k	INFO	====> Epoch: 1325, cost 18.13 s
2023-12-18 07:04:24,374	44k	INFO	====> Epoch: 1326, cost 18.23 s
2023-12-18 07:04:42,642	44k	INFO	====> Epoch: 1327, cost 18.27 s
2023-12-18 07:05:01,104	44k	INFO	====> Epoch: 1328, cost 18.46 s
2023-12-18 07:05:19,588	44k	INFO	====> Epoch: 1329, cost 18.48 s
2023-12-18 07:05:37,921	44k	INFO	====> Epoch: 1330, cost 18.33 s
2023-12-18 07:05:56,019	44k	INFO	====> Epoch: 1331, cost 18.10 s
2023-12-18 07:06:14,579	44k	INFO	====> Epoch: 1332, cost 18.56 s
2023-12-18 07:06:28,907	44k	INFO	Train Epoch: 1333 [60%]
2023-12-18 07:06:28,907	44k	INFO	Losses: [2.1944973468780518, 2.8952925205230713, 10.332586288452148, 21.561479568481445, 0.8830958604812622], step: 20000, lr: 8.464023658051271e-05, reference_loss: 37.86695098876953
2023-12-18 07:06:35,117	44k	INFO	Saving model and optimizer state at iteration 1333 to ./logs\44k\G_20000.pth
2023-12-18 07:06:36,666	44k	INFO	Saving model and optimizer state at iteration 1333 to ./logs\44k\D_20000.pth
2023-12-18 07:06:45,742	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_12000.pth
2023-12-18 07:06:45,742	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_12000.pth
2023-12-18 07:06:50,033	44k	INFO	====> Epoch: 1333, cost 35.45 s
2023-12-18 07:07:08,756	44k	INFO	====> Epoch: 1334, cost 18.72 s
2023-12-18 07:07:27,578	44k	INFO	====> Epoch: 1335, cost 18.82 s
2023-12-18 07:07:45,991	44k	INFO	====> Epoch: 1336, cost 18.41 s
2023-12-18 07:08:04,659	44k	INFO	====> Epoch: 1337, cost 18.67 s
2023-12-18 07:08:23,408	44k	INFO	====> Epoch: 1338, cost 18.75 s
2023-12-18 07:08:41,084	44k	INFO	====> Epoch: 1339, cost 17.68 s
2023-12-18 07:08:57,498	44k	INFO	====> Epoch: 1340, cost 16.41 s
2023-12-18 07:09:13,958	44k	INFO	====> Epoch: 1341, cost 16.46 s
2023-12-18 07:09:30,361	44k	INFO	====> Epoch: 1342, cost 16.40 s
2023-12-18 07:09:46,939	44k	INFO	====> Epoch: 1343, cost 16.58 s
2023-12-18 07:10:03,615	44k	INFO	====> Epoch: 1344, cost 16.68 s
2023-12-18 07:10:21,036	44k	INFO	====> Epoch: 1345, cost 17.42 s
2023-12-18 07:10:37,070	44k	INFO	Train Epoch: 1346 [93%]
2023-12-18 07:10:37,070	44k	INFO	Losses: [2.239088296890259, 2.9878766536712646, 9.63883113861084, 20.143115997314453, 0.5448383688926697], step: 20200, lr: 8.450279930409292e-05, reference_loss: 35.553749084472656
2023-12-18 07:10:38,149	44k	INFO	====> Epoch: 1346, cost 17.11 s
2023-12-18 07:10:54,613	44k	INFO	====> Epoch: 1347, cost 16.46 s
2023-12-18 07:11:11,011	44k	INFO	====> Epoch: 1348, cost 16.40 s
2023-12-18 07:11:27,568	44k	INFO	====> Epoch: 1349, cost 16.56 s
2023-12-18 07:11:43,976	44k	INFO	====> Epoch: 1350, cost 16.41 s
2023-12-18 07:12:00,669	44k	INFO	====> Epoch: 1351, cost 16.69 s
2023-12-18 07:12:17,218	44k	INFO	====> Epoch: 1352, cost 16.55 s
2023-12-18 07:12:33,667	44k	INFO	====> Epoch: 1353, cost 16.45 s
2023-12-18 07:12:50,199	44k	INFO	====> Epoch: 1354, cost 16.53 s
2023-12-18 07:13:06,559	44k	INFO	====> Epoch: 1355, cost 16.36 s
2023-12-18 07:13:23,215	44k	INFO	====> Epoch: 1356, cost 16.66 s
2023-12-18 07:13:39,685	44k	INFO	====> Epoch: 1357, cost 16.47 s
2023-12-18 07:13:56,255	44k	INFO	====> Epoch: 1358, cost 16.57 s
2023-12-18 07:14:12,848	44k	INFO	====> Epoch: 1359, cost 16.59 s
2023-12-18 07:14:22,659	44k	INFO	Train Epoch: 1360 [27%]
2023-12-18 07:14:22,659	44k	INFO	Losses: [2.3740181922912598, 2.825003147125244, 4.8809685707092285, 15.673274040222168, 0.6318756937980652], step: 20400, lr: 8.43550394976729e-05, reference_loss: 26.385141372680664
2023-12-18 07:14:29,985	44k	INFO	====> Epoch: 1360, cost 17.14 s
2023-12-18 07:14:46,615	44k	INFO	====> Epoch: 1361, cost 16.63 s
2023-12-18 07:15:03,174	44k	INFO	====> Epoch: 1362, cost 16.56 s
2023-12-18 07:15:19,460	44k	INFO	====> Epoch: 1363, cost 16.29 s
2023-12-18 07:15:36,033	44k	INFO	====> Epoch: 1364, cost 16.57 s
2023-12-18 07:15:52,729	44k	INFO	====> Epoch: 1365, cost 16.70 s
2023-12-18 07:16:09,370	44k	INFO	====> Epoch: 1366, cost 16.64 s
2023-12-18 07:16:25,838	44k	INFO	====> Epoch: 1367, cost 16.46 s
2023-12-18 07:16:43,277	44k	INFO	====> Epoch: 1368, cost 17.45 s
2023-12-18 07:16:59,743	44k	INFO	====> Epoch: 1369, cost 16.47 s
2023-12-18 07:17:16,053	44k	INFO	====> Epoch: 1370, cost 16.31 s
2023-12-18 07:17:32,469	44k	INFO	====> Epoch: 1371, cost 16.42 s
2023-12-18 07:17:49,005	44k	INFO	====> Epoch: 1372, cost 16.54 s
2023-12-18 07:18:01,921	44k	INFO	Train Epoch: 1373 [60%]
2023-12-18 07:18:01,931	44k	INFO	Losses: [1.9314253330230713, 2.923743963241577, 11.924635887145996, 21.917116165161133, 1.0592107772827148], step: 20600, lr: 8.421806531908801e-05, reference_loss: 39.756134033203125
2023-12-18 07:18:06,063	44k	INFO	====> Epoch: 1373, cost 17.06 s
2023-12-18 07:18:22,493	44k	INFO	====> Epoch: 1374, cost 16.43 s
2023-12-18 07:18:39,038	44k	INFO	====> Epoch: 1375, cost 16.54 s
2023-12-18 07:18:55,422	44k	INFO	====> Epoch: 1376, cost 16.38 s
2023-12-18 07:19:11,834	44k	INFO	====> Epoch: 1377, cost 16.41 s
2023-12-18 07:19:28,303	44k	INFO	====> Epoch: 1378, cost 16.47 s
2023-12-18 07:19:44,878	44k	INFO	====> Epoch: 1379, cost 16.57 s
2023-12-18 07:20:01,322	44k	INFO	====> Epoch: 1380, cost 16.44 s
2023-12-18 07:20:17,888	44k	INFO	====> Epoch: 1381, cost 16.57 s
2023-12-18 07:20:34,859	44k	INFO	====> Epoch: 1382, cost 16.97 s
2023-12-18 07:20:51,418	44k	INFO	====> Epoch: 1383, cost 16.56 s
2023-12-18 07:21:07,872	44k	INFO	====> Epoch: 1384, cost 16.45 s
2023-12-18 07:21:24,472	44k	INFO	====> Epoch: 1385, cost 16.60 s
2023-12-18 07:21:40,390	44k	INFO	Train Epoch: 1386 [93%]
2023-12-18 07:21:40,390	44k	INFO	Losses: [1.5468571186065674, 3.2942280769348145, 15.407390594482422, 20.118900299072266, -0.4497150480747223], step: 20800, lr: 8.40813135566826e-05, reference_loss: 39.91766357421875
2023-12-18 07:21:45,885	44k	INFO	Saving model and optimizer state at iteration 1386 to ./logs\44k\G_20800.pth
2023-12-18 07:21:47,635	44k	INFO	Saving model and optimizer state at iteration 1386 to ./logs\44k\D_20800.pth
2023-12-18 07:21:55,545	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_12800.pth
2023-12-18 07:21:55,545	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_12800.pth
2023-12-18 07:21:56,078	44k	INFO	====> Epoch: 1386, cost 31.61 s
2023-12-18 07:22:12,941	44k	INFO	====> Epoch: 1387, cost 16.86 s
2023-12-18 07:22:29,615	44k	INFO	====> Epoch: 1388, cost 16.67 s
2023-12-18 07:22:46,129	44k	INFO	====> Epoch: 1389, cost 16.51 s
2023-12-18 07:23:02,519	44k	INFO	====> Epoch: 1390, cost 16.39 s
2023-12-18 07:23:18,779	44k	INFO	====> Epoch: 1391, cost 16.26 s
2023-12-18 07:23:36,491	44k	INFO	====> Epoch: 1392, cost 17.71 s
2023-12-18 07:23:53,607	44k	INFO	====> Epoch: 1393, cost 17.12 s
2023-12-18 07:24:10,062	44k	INFO	====> Epoch: 1394, cost 16.46 s
2023-12-18 07:24:26,551	44k	INFO	====> Epoch: 1395, cost 16.49 s
2023-12-18 07:24:42,946	44k	INFO	====> Epoch: 1396, cost 16.39 s
2023-12-18 07:24:59,371	44k	INFO	====> Epoch: 1397, cost 16.43 s
2023-12-18 07:25:15,734	44k	INFO	====> Epoch: 1398, cost 16.36 s
2023-12-18 07:25:32,071	44k	INFO	====> Epoch: 1399, cost 16.34 s
2023-12-18 07:25:41,861	44k	INFO	Train Epoch: 1400 [27%]
2023-12-18 07:25:41,861	44k	INFO	Losses: [2.112722396850586, 2.753509283065796, 10.690067291259766, 21.47221565246582, 0.5585850477218628], step: 21000, lr: 8.393429075132006e-05, reference_loss: 37.587100982666016
2023-12-18 07:25:49,081	44k	INFO	====> Epoch: 1400, cost 17.01 s
2023-12-18 07:26:05,765	44k	INFO	====> Epoch: 1401, cost 16.68 s
2023-12-18 07:26:22,369	44k	INFO	====> Epoch: 1402, cost 16.60 s
2023-12-18 07:26:38,810	44k	INFO	====> Epoch: 1403, cost 16.44 s
2023-12-18 07:26:55,489	44k	INFO	====> Epoch: 1404, cost 16.68 s
2023-12-18 07:27:11,897	44k	INFO	====> Epoch: 1405, cost 16.41 s
2023-12-18 07:27:28,335	44k	INFO	====> Epoch: 1406, cost 16.44 s
2023-12-18 07:27:44,823	44k	INFO	====> Epoch: 1407, cost 16.49 s
2023-12-18 07:28:02,056	44k	INFO	====> Epoch: 1408, cost 17.23 s
2023-12-18 07:28:18,833	44k	INFO	====> Epoch: 1409, cost 16.78 s
2023-12-18 07:28:35,543	44k	INFO	====> Epoch: 1410, cost 16.71 s
2023-12-18 07:28:52,242	44k	INFO	====> Epoch: 1411, cost 16.70 s
2023-12-18 07:29:08,690	44k	INFO	====> Epoch: 1412, cost 16.45 s
2023-12-18 07:29:21,821	44k	INFO	Train Epoch: 1413 [60%]
2023-12-18 07:29:21,821	44k	INFO	Losses: [2.038316249847412, 3.2380669116973877, 11.795734405517578, 22.933055877685547, 0.6940712332725525], step: 21200, lr: 8.379799977689547e-05, reference_loss: 40.69924545288086
2023-12-18 07:29:25,984	44k	INFO	====> Epoch: 1413, cost 17.29 s
2023-12-18 07:29:42,500	44k	INFO	====> Epoch: 1414, cost 16.52 s
2023-12-18 07:29:59,254	44k	INFO	====> Epoch: 1415, cost 16.75 s
2023-12-18 07:30:15,848	44k	INFO	====> Epoch: 1416, cost 16.59 s
2023-12-18 07:30:32,345	44k	INFO	====> Epoch: 1417, cost 16.50 s
2023-12-18 07:30:48,911	44k	INFO	====> Epoch: 1418, cost 16.57 s
2023-12-18 07:31:05,946	44k	INFO	====> Epoch: 1419, cost 17.04 s
2023-12-18 07:31:22,459	44k	INFO	====> Epoch: 1420, cost 16.51 s
2023-12-18 07:31:39,092	44k	INFO	====> Epoch: 1421, cost 16.63 s
2023-12-18 07:31:55,721	44k	INFO	====> Epoch: 1422, cost 16.63 s
2023-12-18 07:32:12,131	44k	INFO	====> Epoch: 1423, cost 16.41 s
2023-12-18 07:32:28,443	44k	INFO	====> Epoch: 1424, cost 16.31 s
2023-12-18 07:32:44,854	44k	INFO	====> Epoch: 1425, cost 16.41 s
2023-12-18 07:33:01,561	44k	INFO	Train Epoch: 1426 [93%]
2023-12-18 07:33:01,561	44k	INFO	Losses: [1.6781567335128784, 3.322093963623047, 9.943658828735352, 18.00555419921875, 0.5710685849189758], step: 21400, lr: 8.36619301092758e-05, reference_loss: 33.520530700683594
2023-12-18 07:33:02,644	44k	INFO	====> Epoch: 1426, cost 17.79 s
2023-12-18 07:33:19,337	44k	INFO	====> Epoch: 1427, cost 16.69 s
2023-12-18 07:33:35,814	44k	INFO	====> Epoch: 1428, cost 16.48 s
2023-12-18 07:33:52,348	44k	INFO	====> Epoch: 1429, cost 16.53 s
2023-12-18 07:34:08,731	44k	INFO	====> Epoch: 1430, cost 16.38 s
2023-12-18 07:34:25,197	44k	INFO	====> Epoch: 1431, cost 16.47 s
2023-12-18 07:34:41,713	44k	INFO	====> Epoch: 1432, cost 16.52 s
2023-12-18 07:34:58,478	44k	INFO	====> Epoch: 1433, cost 16.77 s
2023-12-18 07:35:14,922	44k	INFO	====> Epoch: 1434, cost 16.44 s
2023-12-18 07:35:31,414	44k	INFO	====> Epoch: 1435, cost 16.49 s
2023-12-18 07:35:47,989	44k	INFO	====> Epoch: 1436, cost 16.58 s
2023-12-18 07:36:04,364	44k	INFO	====> Epoch: 1437, cost 16.37 s
2023-12-18 07:36:20,761	44k	INFO	====> Epoch: 1438, cost 16.40 s
2023-12-18 07:36:37,478	44k	INFO	====> Epoch: 1439, cost 16.72 s
2023-12-18 07:36:47,223	44k	INFO	Train Epoch: 1440 [27%]
2023-12-18 07:36:47,223	44k	INFO	Losses: [2.126579523086548, 2.743391752243042, 10.293197631835938, 19.87753677368164, 0.7963422536849976], step: 21600, lr: 8.351564062893342e-05, reference_loss: 35.8370475769043
2023-12-18 07:36:52,414	44k	INFO	Saving model and optimizer state at iteration 1440 to ./logs\44k\G_21600.pth
2023-12-18 07:36:54,359	44k	INFO	Saving model and optimizer state at iteration 1440 to ./logs\44k\D_21600.pth
2023-12-18 07:37:05,154	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_13600.pth
2023-12-18 07:37:05,154	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_13600.pth
2023-12-18 07:37:12,412	44k	INFO	====> Epoch: 1440, cost 34.93 s
2023-12-18 07:37:28,645	44k	INFO	====> Epoch: 1441, cost 16.23 s
2023-12-18 07:37:45,078	44k	INFO	====> Epoch: 1442, cost 16.43 s
2023-12-18 07:38:01,484	44k	INFO	====> Epoch: 1443, cost 16.41 s
2023-12-18 07:38:18,073	44k	INFO	====> Epoch: 1444, cost 16.59 s
2023-12-18 07:38:34,325	44k	INFO	====> Epoch: 1445, cost 16.25 s
2023-12-18 07:38:51,656	44k	INFO	====> Epoch: 1446, cost 17.33 s
2023-12-18 07:39:08,009	44k	INFO	====> Epoch: 1447, cost 16.35 s
2023-12-18 07:39:24,144	44k	INFO	====> Epoch: 1448, cost 16.14 s
2023-12-18 07:39:40,766	44k	INFO	====> Epoch: 1449, cost 16.62 s
2023-12-18 07:39:57,280	44k	INFO	====> Epoch: 1450, cost 16.51 s
2023-12-18 07:40:13,916	44k	INFO	====> Epoch: 1451, cost 16.64 s
2023-12-18 07:40:30,481	44k	INFO	====> Epoch: 1452, cost 16.57 s
2023-12-18 07:40:43,375	44k	INFO	Train Epoch: 1453 [60%]
2023-12-18 07:40:43,375	44k	INFO	Losses: [2.1548244953155518, 2.9541666507720947, 9.660812377929688, 20.433759689331055, 0.666740357875824], step: 21800, lr: 8.338002945096165e-05, reference_loss: 35.870304107666016
2023-12-18 07:40:47,417	44k	INFO	====> Epoch: 1453, cost 16.94 s
2023-12-18 07:41:03,928	44k	INFO	====> Epoch: 1454, cost 16.51 s
2023-12-18 07:41:20,264	44k	INFO	====> Epoch: 1455, cost 16.34 s
2023-12-18 07:41:36,726	44k	INFO	====> Epoch: 1456, cost 16.46 s
2023-12-18 07:41:53,783	44k	INFO	====> Epoch: 1457, cost 17.06 s
2023-12-18 07:42:10,287	44k	INFO	====> Epoch: 1458, cost 16.50 s
2023-12-18 07:42:26,819	44k	INFO	====> Epoch: 1459, cost 16.53 s
2023-12-18 07:42:43,286	44k	INFO	====> Epoch: 1460, cost 16.47 s
2023-12-18 07:42:59,636	44k	INFO	====> Epoch: 1461, cost 16.35 s
2023-12-18 07:43:16,202	44k	INFO	====> Epoch: 1462, cost 16.57 s
2023-12-18 07:43:32,926	44k	INFO	====> Epoch: 1463, cost 16.72 s
2023-12-18 07:43:49,772	44k	INFO	====> Epoch: 1464, cost 16.85 s
2023-12-18 07:44:06,322	44k	INFO	====> Epoch: 1465, cost 16.55 s
2023-12-18 07:44:22,484	44k	INFO	Train Epoch: 1466 [93%]
2023-12-18 07:44:22,484	44k	INFO	Losses: [2.019838333129883, 3.134286642074585, 15.117714881896973, 19.533857345581055, 0.9029085636138916], step: 22000, lr: 8.324463847595367e-05, reference_loss: 40.70860290527344
2023-12-18 07:44:23,496	44k	INFO	====> Epoch: 1466, cost 17.17 s
2023-12-18 07:44:39,960	44k	INFO	====> Epoch: 1467, cost 16.46 s
2023-12-18 07:44:56,331	44k	INFO	====> Epoch: 1468, cost 16.37 s
2023-12-18 07:45:12,874	44k	INFO	====> Epoch: 1469, cost 16.54 s
2023-12-18 07:45:29,492	44k	INFO	====> Epoch: 1470, cost 16.62 s
2023-12-18 07:45:46,238	44k	INFO	====> Epoch: 1471, cost 16.75 s
2023-12-18 07:46:03,003	44k	INFO	====> Epoch: 1472, cost 16.77 s
2023-12-18 07:46:19,984	44k	INFO	====> Epoch: 1473, cost 16.98 s
2023-12-18 07:46:38,018	44k	INFO	====> Epoch: 1474, cost 18.03 s
2023-12-18 07:46:55,905	44k	INFO	====> Epoch: 1475, cost 17.89 s
2023-12-18 07:47:12,151	44k	INFO	====> Epoch: 1476, cost 16.25 s
2023-12-18 07:47:28,484	44k	INFO	====> Epoch: 1477, cost 16.33 s
2023-12-18 07:47:44,754	44k	INFO	====> Epoch: 1478, cost 16.27 s
2023-12-18 07:48:00,953	44k	INFO	====> Epoch: 1479, cost 16.20 s
2023-12-18 07:48:10,724	44k	INFO	Train Epoch: 1480 [27%]
2023-12-18 07:48:10,724	44k	INFO	Losses: [2.199357271194458, 2.438746690750122, 8.288128852844238, 19.75950050354004, 0.5457698106765747], step: 22200, lr: 8.309907866292964e-05, reference_loss: 33.231502532958984
2023-12-18 07:48:17,870	44k	INFO	====> Epoch: 1480, cost 16.92 s
2023-12-18 07:48:34,291	44k	INFO	====> Epoch: 1481, cost 16.42 s
2023-12-18 07:48:50,666	44k	INFO	====> Epoch: 1482, cost 16.37 s
2023-12-18 07:49:06,825	44k	INFO	====> Epoch: 1483, cost 16.16 s
2023-12-18 07:49:23,083	44k	INFO	====> Epoch: 1484, cost 16.26 s
2023-12-18 07:49:39,457	44k	INFO	====> Epoch: 1485, cost 16.37 s
2023-12-18 07:49:55,931	44k	INFO	====> Epoch: 1486, cost 16.47 s
2023-12-18 07:50:12,357	44k	INFO	====> Epoch: 1487, cost 16.43 s
2023-12-18 07:50:28,733	44k	INFO	====> Epoch: 1488, cost 16.38 s
2023-12-18 07:50:44,912	44k	INFO	====> Epoch: 1489, cost 16.18 s
2023-12-18 07:51:01,145	44k	INFO	====> Epoch: 1490, cost 16.23 s
2023-12-18 07:51:17,475	44k	INFO	====> Epoch: 1491, cost 16.33 s
2023-12-18 07:51:33,692	44k	INFO	====> Epoch: 1492, cost 16.22 s
2023-12-18 07:51:46,292	44k	INFO	Train Epoch: 1493 [60%]
2023-12-18 07:51:46,292	44k	INFO	Losses: [2.3542392253875732, 2.526057481765747, 6.919995307922363, 19.040037155151367, 1.002414584159851], step: 22400, lr: 8.296414389070031e-05, reference_loss: 31.842742919921875
2023-12-18 07:51:51,583	44k	INFO	Saving model and optimizer state at iteration 1493 to ./logs\44k\G_22400.pth
2023-12-18 07:51:52,775	44k	INFO	Saving model and optimizer state at iteration 1493 to ./logs\44k\D_22400.pth
2023-12-18 07:51:59,925	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_14400.pth
2023-12-18 07:51:59,925	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_14400.pth
2023-12-18 07:52:03,680	44k	INFO	====> Epoch: 1493, cost 29.99 s
2023-12-18 07:52:20,383	44k	INFO	====> Epoch: 1494, cost 16.70 s
2023-12-18 07:52:36,713	44k	INFO	====> Epoch: 1495, cost 16.33 s
2023-12-18 07:52:53,013	44k	INFO	====> Epoch: 1496, cost 16.30 s
2023-12-18 07:53:09,497	44k	INFO	====> Epoch: 1497, cost 16.48 s
2023-12-18 07:53:25,834	44k	INFO	====> Epoch: 1498, cost 16.34 s
2023-12-18 07:53:41,964	44k	INFO	====> Epoch: 1499, cost 16.13 s
2023-12-18 07:53:58,089	44k	INFO	====> Epoch: 1500, cost 16.12 s
2023-12-18 07:54:14,388	44k	INFO	====> Epoch: 1501, cost 16.30 s
2023-12-18 07:54:30,591	44k	INFO	====> Epoch: 1502, cost 16.20 s
2023-12-18 07:54:46,688	44k	INFO	====> Epoch: 1503, cost 16.10 s
2023-12-18 07:55:03,105	44k	INFO	====> Epoch: 1504, cost 16.42 s
2023-12-18 07:55:19,162	44k	INFO	====> Epoch: 1505, cost 16.06 s
2023-12-18 07:55:34,910	44k	INFO	Train Epoch: 1506 [93%]
2023-12-18 07:55:34,910	44k	INFO	Losses: [2.2275707721710205, 3.0072028636932373, 14.59841251373291, 21.830427169799805, 0.4631933569908142], step: 22600, lr: 8.282942822309947e-05, reference_loss: 42.12680435180664
2023-12-18 07:55:35,929	44k	INFO	====> Epoch: 1506, cost 16.77 s
2023-12-18 07:55:52,290	44k	INFO	====> Epoch: 1507, cost 16.36 s
2023-12-18 07:56:08,514	44k	INFO	====> Epoch: 1508, cost 16.22 s
2023-12-18 07:56:24,720	44k	INFO	====> Epoch: 1509, cost 16.21 s
2023-12-18 07:56:40,941	44k	INFO	====> Epoch: 1510, cost 16.22 s
2023-12-18 07:56:57,193	44k	INFO	====> Epoch: 1511, cost 16.25 s
2023-12-18 07:57:13,239	44k	INFO	====> Epoch: 1512, cost 16.05 s
2023-12-18 07:57:29,457	44k	INFO	====> Epoch: 1513, cost 16.22 s
2023-12-18 07:57:45,459	44k	INFO	====> Epoch: 1514, cost 16.00 s
2023-12-18 07:58:01,640	44k	INFO	====> Epoch: 1515, cost 16.18 s
2023-12-18 07:58:18,079	44k	INFO	====> Epoch: 1516, cost 16.44 s
2023-12-18 07:58:34,284	44k	INFO	====> Epoch: 1517, cost 16.21 s
2023-12-18 07:58:50,503	44k	INFO	====> Epoch: 1518, cost 16.22 s
2023-12-18 07:59:06,710	44k	INFO	====> Epoch: 1519, cost 16.21 s
2023-12-18 07:59:16,258	44k	INFO	Train Epoch: 1520 [27%]
2023-12-18 07:59:16,258	44k	INFO	Losses: [1.71194589138031, 3.363090753555298, 13.567883491516113, 27.540983200073242, 0.6672484874725342], step: 22800, lr: 8.268459443793592e-05, reference_loss: 46.85115051269531
2023-12-18 07:59:23,419	44k	INFO	====> Epoch: 1520, cost 16.71 s
2023-12-18 07:59:39,621	44k	INFO	====> Epoch: 1521, cost 16.20 s
2023-12-18 07:59:55,832	44k	INFO	====> Epoch: 1522, cost 16.21 s
2023-12-18 08:00:12,171	44k	INFO	====> Epoch: 1523, cost 16.34 s
2023-12-18 08:00:28,533	44k	INFO	====> Epoch: 1524, cost 16.36 s
2023-12-18 08:00:44,757	44k	INFO	====> Epoch: 1525, cost 16.22 s
2023-12-18 08:01:01,146	44k	INFO	====> Epoch: 1526, cost 16.39 s
2023-12-18 08:01:17,250	44k	INFO	====> Epoch: 1527, cost 16.10 s
2023-12-18 08:01:33,416	44k	INFO	====> Epoch: 1528, cost 16.17 s
2023-12-18 08:01:49,564	44k	INFO	====> Epoch: 1529, cost 16.15 s
2023-12-18 08:02:05,693	44k	INFO	====> Epoch: 1530, cost 16.13 s
2023-12-18 08:02:21,910	44k	INFO	====> Epoch: 1531, cost 16.22 s
2023-12-18 08:02:38,003	44k	INFO	====> Epoch: 1532, cost 16.09 s
2023-12-18 08:02:50,673	44k	INFO	Train Epoch: 1533 [60%]
2023-12-18 08:02:50,683	44k	INFO	Losses: [1.8090155124664307, 3.122904062271118, 12.41435718536377, 23.92654037475586, 0.7505899667739868], step: 23000, lr: 8.255033269765102e-05, reference_loss: 42.02341079711914
2023-12-18 08:02:54,779	44k	INFO	====> Epoch: 1533, cost 16.78 s
2023-12-18 08:03:11,028	44k	INFO	====> Epoch: 1534, cost 16.25 s
2023-12-18 08:03:27,404	44k	INFO	====> Epoch: 1535, cost 16.38 s
2023-12-18 08:03:43,516	44k	INFO	====> Epoch: 1536, cost 16.11 s
2023-12-18 08:03:59,903	44k	INFO	====> Epoch: 1537, cost 16.39 s
2023-12-18 08:04:16,126	44k	INFO	====> Epoch: 1538, cost 16.22 s
2023-12-18 08:04:32,343	44k	INFO	====> Epoch: 1539, cost 16.22 s
2023-12-18 08:04:48,698	44k	INFO	====> Epoch: 1540, cost 16.36 s
2023-12-18 08:05:04,880	44k	INFO	====> Epoch: 1541, cost 16.18 s
2023-12-18 08:05:21,330	44k	INFO	====> Epoch: 1542, cost 16.45 s
2023-12-18 08:05:37,507	44k	INFO	====> Epoch: 1543, cost 16.18 s
2023-12-18 08:05:53,633	44k	INFO	====> Epoch: 1544, cost 16.13 s
2023-12-18 08:06:09,794	44k	INFO	====> Epoch: 1545, cost 16.16 s
2023-12-18 08:06:25,506	44k	INFO	Train Epoch: 1546 [93%]
2023-12-18 08:06:25,506	44k	INFO	Losses: [2.1339004039764404, 2.8378357887268066, 6.137299060821533, 13.768893241882324, -0.35813963413238525], step: 23200, lr: 8.241628896913756e-05, reference_loss: 24.519790649414062
2023-12-18 08:06:30,748	44k	INFO	Saving model and optimizer state at iteration 1546 to ./logs\44k\G_23200.pth
2023-12-18 08:06:32,227	44k	INFO	Saving model and optimizer state at iteration 1546 to ./logs\44k\D_23200.pth
2023-12-18 08:06:37,118	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_15200.pth
2023-12-18 08:06:37,118	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_15200.pth
2023-12-18 08:06:37,653	44k	INFO	====> Epoch: 1546, cost 27.86 s
2023-12-18 08:06:54,818	44k	INFO	====> Epoch: 1547, cost 17.17 s
2023-12-18 08:07:11,411	44k	INFO	====> Epoch: 1548, cost 16.59 s
2023-12-18 08:07:27,802	44k	INFO	====> Epoch: 1549, cost 16.39 s
2023-12-18 08:07:44,036	44k	INFO	====> Epoch: 1550, cost 16.23 s
2023-12-18 08:08:00,319	44k	INFO	====> Epoch: 1551, cost 16.28 s
2023-12-18 08:08:16,437	44k	INFO	====> Epoch: 1552, cost 16.12 s
2023-12-18 08:08:32,715	44k	INFO	====> Epoch: 1553, cost 16.28 s
2023-12-18 08:08:48,854	44k	INFO	====> Epoch: 1554, cost 16.14 s
2023-12-18 08:09:04,979	44k	INFO	====> Epoch: 1555, cost 16.13 s
2023-12-18 08:09:21,255	44k	INFO	====> Epoch: 1556, cost 16.28 s
2023-12-18 08:09:37,422	44k	INFO	====> Epoch: 1557, cost 16.17 s
2023-12-18 08:09:53,631	44k	INFO	====> Epoch: 1558, cost 16.21 s
2023-12-18 08:10:10,141	44k	INFO	====> Epoch: 1559, cost 16.51 s
2023-12-18 08:10:20,024	44k	INFO	Train Epoch: 1560 [27%]
2023-12-18 08:10:20,024	44k	INFO	Losses: [2.3457705974578857, 2.811798572540283, 10.345260620117188, 19.562538146972656, 0.20345059037208557], step: 23400, lr: 8.227217759052969e-05, reference_loss: 35.26881790161133
2023-12-18 08:10:27,156	44k	INFO	====> Epoch: 1560, cost 17.01 s
2023-12-18 08:10:43,512	44k	INFO	====> Epoch: 1561, cost 16.36 s
2023-12-18 08:10:59,555	44k	INFO	====> Epoch: 1562, cost 16.04 s
2023-12-18 08:11:15,941	44k	INFO	====> Epoch: 1563, cost 16.39 s
2023-12-18 08:11:32,083	44k	INFO	====> Epoch: 1564, cost 16.14 s
2023-12-18 08:11:48,284	44k	INFO	====> Epoch: 1565, cost 16.20 s
2023-12-18 08:12:04,747	44k	INFO	====> Epoch: 1566, cost 16.46 s
2023-12-18 08:12:20,987	44k	INFO	====> Epoch: 1567, cost 16.24 s
2023-12-18 08:12:37,280	44k	INFO	====> Epoch: 1568, cost 16.29 s
2023-12-18 08:12:53,435	44k	INFO	====> Epoch: 1569, cost 16.15 s
2023-12-18 08:13:09,617	44k	INFO	====> Epoch: 1570, cost 16.18 s
2023-12-18 08:13:25,798	44k	INFO	====> Epoch: 1571, cost 16.18 s
2023-12-18 08:13:42,061	44k	INFO	====> Epoch: 1572, cost 16.26 s
2023-12-18 08:13:54,741	44k	INFO	Train Epoch: 1573 [60%]
2023-12-18 08:13:54,741	44k	INFO	Losses: [2.0476620197296143, 2.8168067932128906, 14.1802978515625, 21.461339950561523, 0.7835718989372253], step: 23600, lr: 8.21385855252191e-05, reference_loss: 41.289676666259766
2023-12-18 08:13:58,799	44k	INFO	====> Epoch: 1573, cost 16.74 s
2023-12-18 08:14:15,062	44k	INFO	====> Epoch: 1574, cost 16.26 s
2023-12-18 08:14:31,368	44k	INFO	====> Epoch: 1575, cost 16.31 s
2023-12-18 08:14:47,623	44k	INFO	====> Epoch: 1576, cost 16.25 s
2023-12-18 08:15:03,756	44k	INFO	====> Epoch: 1577, cost 16.13 s
2023-12-18 08:15:19,937	44k	INFO	====> Epoch: 1578, cost 16.18 s
2023-12-18 08:15:36,233	44k	INFO	====> Epoch: 1579, cost 16.30 s
2023-12-18 08:15:52,716	44k	INFO	====> Epoch: 1580, cost 16.48 s
2023-12-18 08:16:09,324	44k	INFO	====> Epoch: 1581, cost 16.61 s
2023-12-18 08:16:25,562	44k	INFO	====> Epoch: 1582, cost 16.24 s
2023-12-18 08:16:41,704	44k	INFO	====> Epoch: 1583, cost 16.14 s
2023-12-18 08:16:57,904	44k	INFO	====> Epoch: 1584, cost 16.20 s
2023-12-18 08:17:14,181	44k	INFO	====> Epoch: 1585, cost 16.28 s
2023-12-18 08:17:30,103	44k	INFO	Train Epoch: 1586 [93%]
2023-12-18 08:17:30,113	44k	INFO	Losses: [2.358436346054077, 3.9155044555664062, 16.03541374206543, 26.708087921142578, 0.5396987795829773], step: 23800, lr: 8.20052103842739e-05, reference_loss: 49.5571403503418
2023-12-18 08:17:31,179	44k	INFO	====> Epoch: 1586, cost 17.00 s
2023-12-18 08:17:47,657	44k	INFO	====> Epoch: 1587, cost 16.48 s
2023-12-18 08:18:03,996	44k	INFO	====> Epoch: 1588, cost 16.34 s
2023-12-18 08:18:20,346	44k	INFO	====> Epoch: 1589, cost 16.35 s
2023-12-18 08:18:36,670	44k	INFO	====> Epoch: 1590, cost 16.32 s
2023-12-18 08:18:52,833	44k	INFO	====> Epoch: 1591, cost 16.16 s
2023-12-18 08:19:09,056	44k	INFO	====> Epoch: 1592, cost 16.22 s
2023-12-18 08:19:25,141	44k	INFO	====> Epoch: 1593, cost 16.09 s
2023-12-18 08:19:41,349	44k	INFO	====> Epoch: 1594, cost 16.21 s
2023-12-18 08:19:57,763	44k	INFO	====> Epoch: 1595, cost 16.41 s
2023-12-18 08:20:13,988	44k	INFO	====> Epoch: 1596, cost 16.22 s
2023-12-18 08:20:30,214	44k	INFO	====> Epoch: 1597, cost 16.23 s
2023-12-18 08:20:46,415	44k	INFO	====> Epoch: 1598, cost 16.20 s
2023-12-18 08:21:02,682	44k	INFO	====> Epoch: 1599, cost 16.27 s
2023-12-18 08:21:12,251	44k	INFO	Train Epoch: 1600 [27%]
2023-12-18 08:21:12,251	44k	INFO	Losses: [2.389068126678467, 2.7547788619995117, 10.195369720458984, 21.84174156188965, 0.5020940899848938], step: 24000, lr: 8.186181780897936e-05, reference_loss: 37.68305206298828
2023-12-18 08:21:17,457	44k	INFO	Saving model and optimizer state at iteration 1600 to ./logs\44k\G_24000.pth
2023-12-18 08:21:18,648	44k	INFO	Saving model and optimizer state at iteration 1600 to ./logs\44k\D_24000.pth
2023-12-18 08:21:25,617	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_16000.pth
2023-12-18 08:21:25,617	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_16000.pth
2023-12-18 08:21:32,820	44k	INFO	====> Epoch: 1600, cost 30.14 s
2023-12-18 08:21:49,115	44k	INFO	====> Epoch: 1601, cost 16.30 s
2023-12-18 08:22:05,445	44k	INFO	====> Epoch: 1602, cost 16.33 s
2023-12-18 08:22:21,680	44k	INFO	====> Epoch: 1603, cost 16.24 s
2023-12-18 08:22:38,052	44k	INFO	====> Epoch: 1604, cost 16.37 s
2023-12-18 08:22:54,404	44k	INFO	====> Epoch: 1605, cost 16.35 s
2023-12-18 08:23:10,689	44k	INFO	====> Epoch: 1606, cost 16.29 s
2023-12-18 08:23:26,960	44k	INFO	====> Epoch: 1607, cost 16.27 s
2023-12-18 08:23:43,452	44k	INFO	====> Epoch: 1608, cost 16.49 s
2023-12-18 08:24:03,303	44k	INFO	====> Epoch: 1609, cost 19.85 s
2023-12-18 08:24:25,572	44k	INFO	====> Epoch: 1610, cost 22.27 s
2023-12-18 08:24:46,328	44k	INFO	====> Epoch: 1611, cost 20.76 s
2023-12-18 08:25:06,632	44k	INFO	====> Epoch: 1612, cost 20.30 s
2023-12-18 08:25:22,730	44k	INFO	Train Epoch: 1613 [60%]
2023-12-18 08:25:22,730	44k	INFO	Losses: [2.1355767250061035, 2.58480167388916, 9.032773971557617, 18.851511001586914, 0.7562994360923767], step: 24200, lr: 8.172889207841696e-05, reference_loss: 33.3609619140625
2023-12-18 08:25:27,582	44k	INFO	====> Epoch: 1613, cost 20.95 s
2023-12-18 08:25:48,040	44k	INFO	====> Epoch: 1614, cost 20.46 s
2023-12-18 08:26:08,221	44k	INFO	====> Epoch: 1615, cost 20.18 s
2023-12-18 08:26:28,237	44k	INFO	====> Epoch: 1616, cost 20.02 s
2023-12-18 08:26:48,072	44k	INFO	====> Epoch: 1617, cost 19.84 s
2023-12-18 08:27:08,464	44k	INFO	====> Epoch: 1618, cost 20.39 s
2023-12-18 08:27:28,545	44k	INFO	====> Epoch: 1619, cost 20.08 s
2023-12-18 08:27:48,326	44k	INFO	====> Epoch: 1620, cost 19.78 s
2023-12-18 08:28:08,205	44k	INFO	====> Epoch: 1621, cost 19.87 s
2023-12-18 08:28:27,678	44k	INFO	====> Epoch: 1622, cost 19.48 s
2023-12-18 08:28:47,952	44k	INFO	====> Epoch: 1623, cost 20.27 s
2023-12-18 08:29:07,909	44k	INFO	====> Epoch: 1624, cost 19.96 s
2023-12-18 08:29:27,643	44k	INFO	====> Epoch: 1625, cost 19.73 s
2023-12-18 08:29:47,644	44k	INFO	Train Epoch: 1626 [93%]
2023-12-18 08:29:47,644	44k	INFO	Losses: [2.1381587982177734, 2.8078479766845703, 12.923676490783691, 19.802343368530273, 0.16612057387828827], step: 24400, lr: 8.159618219023775e-05, reference_loss: 37.83815002441406
2023-12-18 08:29:48,904	44k	INFO	====> Epoch: 1626, cost 21.26 s
2023-12-18 08:30:08,878	44k	INFO	====> Epoch: 1627, cost 19.97 s
2023-12-18 08:30:28,590	44k	INFO	====> Epoch: 1628, cost 19.71 s
2023-12-18 08:30:48,730	44k	INFO	====> Epoch: 1629, cost 20.14 s
2023-12-18 08:31:09,076	44k	INFO	====> Epoch: 1630, cost 20.35 s
2023-12-18 08:31:29,185	44k	INFO	====> Epoch: 1631, cost 20.11 s
2023-12-18 08:31:49,557	44k	INFO	====> Epoch: 1632, cost 20.37 s
2023-12-18 08:32:09,743	44k	INFO	====> Epoch: 1633, cost 20.19 s
2023-12-18 08:32:28,905	44k	INFO	====> Epoch: 1634, cost 19.16 s
2023-12-18 08:32:48,087	44k	INFO	====> Epoch: 1635, cost 19.18 s
2023-12-18 08:33:08,235	44k	INFO	====> Epoch: 1636, cost 20.15 s
2023-12-18 08:33:28,136	44k	INFO	====> Epoch: 1637, cost 19.90 s
2023-12-18 08:33:48,905	44k	INFO	====> Epoch: 1638, cost 20.77 s
2023-12-18 08:34:09,289	44k	INFO	====> Epoch: 1639, cost 20.38 s
2023-12-18 08:34:21,479	44k	INFO	Train Epoch: 1640 [27%]
2023-12-18 08:34:21,479	44k	INFO	Losses: [2.016619920730591, 3.452375888824463, 10.415731430053711, 19.69516372680664, 0.4950009286403656], step: 24600, lr: 8.145350483298648e-05, reference_loss: 36.074893951416016
2023-12-18 08:34:30,211	44k	INFO	====> Epoch: 1640, cost 20.92 s
2023-12-18 08:34:50,414	44k	INFO	====> Epoch: 1641, cost 20.20 s
2023-12-18 08:35:11,027	44k	INFO	====> Epoch: 1642, cost 20.61 s
2023-12-18 08:35:31,372	44k	INFO	====> Epoch: 1643, cost 20.34 s
2023-12-18 08:35:51,158	44k	INFO	====> Epoch: 1644, cost 19.79 s
2023-12-18 08:36:11,449	44k	INFO	====> Epoch: 1645, cost 20.29 s
2023-12-18 08:36:32,191	44k	INFO	====> Epoch: 1646, cost 20.74 s
2023-12-18 08:36:52,386	44k	INFO	====> Epoch: 1647, cost 20.19 s
2023-12-18 08:37:12,640	44k	INFO	====> Epoch: 1648, cost 20.25 s
2023-12-18 08:37:32,939	44k	INFO	====> Epoch: 1649, cost 20.30 s
2023-12-18 08:37:53,207	44k	INFO	====> Epoch: 1650, cost 20.27 s
2023-12-18 08:38:13,582	44k	INFO	====> Epoch: 1651, cost 20.38 s
2023-12-18 08:38:33,990	44k	INFO	====> Epoch: 1652, cost 20.41 s
2023-12-18 08:38:50,250	44k	INFO	Train Epoch: 1653 [60%]
2023-12-18 08:38:50,250	44k	INFO	Losses: [2.276561737060547, 2.975928544998169, 7.9189229011535645, 18.231260299682617, 0.8706393241882324], step: 24800, lr: 8.132124211360665e-05, reference_loss: 32.273311614990234
2023-12-18 08:38:57,109	44k	INFO	Saving model and optimizer state at iteration 1653 to ./logs\44k\G_24800.pth
2023-12-18 08:38:58,762	44k	INFO	Saving model and optimizer state at iteration 1653 to ./logs\44k\D_24800.pth
2023-12-18 08:39:05,165	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_16800.pth
2023-12-18 08:39:05,165	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_16800.pth
2023-12-18 08:39:09,695	44k	INFO	====> Epoch: 1653, cost 35.71 s
2023-12-18 08:39:30,805	44k	INFO	====> Epoch: 1654, cost 21.11 s
2023-12-18 08:39:50,950	44k	INFO	====> Epoch: 1655, cost 20.15 s
2023-12-18 08:40:11,781	44k	INFO	====> Epoch: 1656, cost 20.83 s
2023-12-18 08:40:31,992	44k	INFO	====> Epoch: 1657, cost 20.21 s
2023-12-18 08:40:52,094	44k	INFO	====> Epoch: 1658, cost 20.10 s
2023-12-18 08:41:12,214	44k	INFO	====> Epoch: 1659, cost 20.12 s
2023-12-18 08:41:32,110	44k	INFO	====> Epoch: 1660, cost 19.90 s
2023-12-18 08:41:52,105	44k	INFO	====> Epoch: 1661, cost 20.00 s
2023-12-18 08:42:11,652	44k	INFO	====> Epoch: 1662, cost 19.55 s
2023-12-18 08:42:32,004	44k	INFO	====> Epoch: 1663, cost 20.35 s
2023-12-18 08:42:51,821	44k	INFO	====> Epoch: 1664, cost 19.82 s
2023-12-18 08:43:11,802	44k	INFO	====> Epoch: 1665, cost 19.98 s
2023-12-18 08:43:31,114	44k	INFO	Train Epoch: 1666 [93%]
2023-12-18 08:43:31,114	44k	INFO	Losses: [2.0233466625213623, 3.0446527004241943, 11.105870246887207, 16.779006958007812, 0.054374564439058304], step: 25000, lr: 8.11891941600245e-05, reference_loss: 33.00725173950195
2023-12-18 08:43:32,404	44k	INFO	====> Epoch: 1666, cost 20.60 s
2023-12-18 08:43:52,864	44k	INFO	====> Epoch: 1667, cost 20.46 s
2023-12-18 08:44:12,834	44k	INFO	====> Epoch: 1668, cost 19.97 s
2023-12-18 08:44:32,618	44k	INFO	====> Epoch: 1669, cost 19.78 s
2023-12-18 08:44:52,334	44k	INFO	====> Epoch: 1670, cost 19.72 s
2023-12-18 08:45:12,440	44k	INFO	====> Epoch: 1671, cost 20.11 s
2023-12-18 08:45:32,521	44k	INFO	====> Epoch: 1672, cost 20.08 s
2023-12-18 08:45:52,695	44k	INFO	====> Epoch: 1673, cost 20.17 s
2023-12-18 08:46:13,118	44k	INFO	====> Epoch: 1674, cost 20.42 s
2023-12-18 08:46:32,901	44k	INFO	====> Epoch: 1675, cost 19.78 s
2023-12-18 08:46:53,086	44k	INFO	====> Epoch: 1676, cost 20.18 s
2023-12-18 08:47:13,272	44k	INFO	====> Epoch: 1677, cost 20.19 s
2023-12-18 08:47:33,381	44k	INFO	====> Epoch: 1678, cost 20.11 s
2023-12-18 08:47:53,724	44k	INFO	====> Epoch: 1679, cost 20.34 s
2023-12-18 08:48:06,015	44k	INFO	Train Epoch: 1680 [27%]
2023-12-18 08:48:06,015	44k	INFO	Losses: [2.0101265907287598, 2.779895782470703, 11.294553756713867, 20.434438705444336, 0.6567613482475281], step: 25200, lr: 8.104722845342925e-05, reference_loss: 37.17577362060547
2023-12-18 08:48:14,554	44k	INFO	====> Epoch: 1680, cost 20.83 s
2023-12-18 08:48:34,819	44k	INFO	====> Epoch: 1681, cost 20.26 s
2023-12-18 08:48:54,733	44k	INFO	====> Epoch: 1682, cost 19.91 s
2023-12-18 08:49:14,978	44k	INFO	====> Epoch: 1683, cost 20.24 s
2023-12-18 08:49:35,374	44k	INFO	====> Epoch: 1684, cost 20.40 s
2023-12-18 08:49:55,753	44k	INFO	====> Epoch: 1685, cost 20.38 s
2023-12-18 08:50:16,130	44k	INFO	====> Epoch: 1686, cost 20.38 s
2023-12-18 08:50:36,684	44k	INFO	====> Epoch: 1687, cost 20.55 s
2023-12-18 08:50:57,514	44k	INFO	====> Epoch: 1688, cost 20.83 s
2023-12-18 08:51:17,655	44k	INFO	====> Epoch: 1689, cost 20.14 s
2023-12-18 08:51:38,610	44k	INFO	====> Epoch: 1690, cost 20.96 s
2023-12-18 08:51:58,856	44k	INFO	====> Epoch: 1691, cost 20.25 s
2023-12-18 08:52:18,426	44k	INFO	====> Epoch: 1692, cost 19.57 s
2023-12-18 08:52:34,115	44k	INFO	Train Epoch: 1693 [60%]
2023-12-18 08:52:34,115	44k	INFO	Losses: [1.9679383039474487, 3.110562562942505, 10.99479866027832, 23.04935073852539, 0.5363203883171082], step: 25400, lr: 8.091562543824374e-05, reference_loss: 39.65896987915039
2023-12-18 08:52:38,895	44k	INFO	====> Epoch: 1693, cost 20.47 s
2023-12-18 08:52:58,574	44k	INFO	====> Epoch: 1694, cost 19.68 s
2023-12-18 08:53:18,096	44k	INFO	====> Epoch: 1695, cost 19.52 s
2023-12-18 08:53:37,475	44k	INFO	====> Epoch: 1696, cost 19.38 s
2023-12-18 08:53:57,085	44k	INFO	====> Epoch: 1697, cost 19.61 s
2023-12-18 08:54:16,681	44k	INFO	====> Epoch: 1698, cost 19.60 s
2023-12-18 08:54:36,271	44k	INFO	====> Epoch: 1699, cost 19.59 s
2023-12-18 08:54:55,673	44k	INFO	====> Epoch: 1700, cost 19.40 s
2023-12-18 08:55:15,733	44k	INFO	====> Epoch: 1701, cost 20.06 s
2023-12-18 08:55:35,602	44k	INFO	====> Epoch: 1702, cost 19.87 s
2023-12-18 08:55:55,543	44k	INFO	====> Epoch: 1703, cost 19.94 s
2023-12-18 08:56:15,493	44k	INFO	====> Epoch: 1704, cost 19.95 s
2023-12-18 08:56:33,763	44k	INFO	====> Epoch: 1705, cost 18.27 s
2023-12-18 08:56:49,634	44k	INFO	Train Epoch: 1706 [93%]
2023-12-18 08:56:49,644	44k	INFO	Losses: [1.1918867826461792, 3.8542721271514893, 16.706298828125, 22.00444793701172, 0.22113649547100067], step: 25600, lr: 8.078423611764021e-05, reference_loss: 43.97804260253906
2023-12-18 08:56:54,955	44k	INFO	Saving model and optimizer state at iteration 1706 to ./logs\44k\G_25600.pth
2023-12-18 08:56:56,212	44k	INFO	Saving model and optimizer state at iteration 1706 to ./logs\44k\D_25600.pth
2023-12-18 08:56:59,457	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_17600.pth
2023-12-18 08:56:59,457	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_17600.pth
2023-12-18 08:57:00,024	44k	INFO	====> Epoch: 1706, cost 26.26 s
2023-12-18 08:57:18,198	44k	INFO	====> Epoch: 1707, cost 18.17 s
2023-12-18 08:57:35,104	44k	INFO	====> Epoch: 1708, cost 16.91 s
2023-12-18 08:57:51,853	44k	INFO	====> Epoch: 1709, cost 16.75 s
2023-12-18 08:58:08,032	44k	INFO	====> Epoch: 1710, cost 16.18 s
2023-12-18 08:58:24,192	44k	INFO	====> Epoch: 1711, cost 16.16 s
2023-12-18 08:58:40,467	44k	INFO	====> Epoch: 1712, cost 16.27 s
2023-12-18 08:58:56,750	44k	INFO	====> Epoch: 1713, cost 16.28 s
2023-12-18 08:59:13,015	44k	INFO	====> Epoch: 1714, cost 16.26 s
2023-12-18 08:59:29,329	44k	INFO	====> Epoch: 1715, cost 16.31 s
2023-12-18 08:59:45,883	44k	INFO	====> Epoch: 1716, cost 16.55 s
2023-12-18 09:00:02,132	44k	INFO	====> Epoch: 1717, cost 16.25 s
2023-12-18 09:00:18,375	44k	INFO	====> Epoch: 1718, cost 16.24 s
2023-12-18 09:00:34,742	44k	INFO	====> Epoch: 1719, cost 16.37 s
2023-12-18 09:00:44,551	44k	INFO	Train Epoch: 1720 [27%]
2023-12-18 09:00:44,551	44k	INFO	Losses: [1.9788492918014526, 2.8552985191345215, 12.47994327545166, 20.395248413085938, 0.7447962164878845], step: 25800, lr: 8.064297851210724e-05, reference_loss: 38.45413589477539
2023-12-18 09:00:51,677	44k	INFO	====> Epoch: 1720, cost 16.94 s
2023-12-18 09:01:08,262	44k	INFO	====> Epoch: 1721, cost 16.58 s
2023-12-18 09:01:24,474	44k	INFO	====> Epoch: 1722, cost 16.21 s
2023-12-18 09:01:40,986	44k	INFO	====> Epoch: 1723, cost 16.51 s
2023-12-18 09:01:57,414	44k	INFO	====> Epoch: 1724, cost 16.43 s
2023-12-18 09:02:13,572	44k	INFO	====> Epoch: 1725, cost 16.16 s
2023-12-18 09:02:29,784	44k	INFO	====> Epoch: 1726, cost 16.21 s
2023-12-18 09:02:46,045	44k	INFO	====> Epoch: 1727, cost 16.26 s
2023-12-18 09:03:02,170	44k	INFO	====> Epoch: 1728, cost 16.12 s
2023-12-18 09:03:18,432	44k	INFO	====> Epoch: 1729, cost 16.26 s
2023-12-18 09:03:34,631	44k	INFO	====> Epoch: 1730, cost 16.20 s
2023-12-18 09:03:50,900	44k	INFO	====> Epoch: 1731, cost 16.27 s
2023-12-18 09:04:07,065	44k	INFO	====> Epoch: 1732, cost 16.16 s
2023-12-18 09:04:19,833	44k	INFO	Train Epoch: 1733 [60%]
2023-12-18 09:04:19,833	44k	INFO	Losses: [1.8051795959472656, 3.1406521797180176, 12.487703323364258, 23.789897918701172, 1.0320721864700317], step: 26000, lr: 8.051203191062253e-05, reference_loss: 42.25550842285156
2023-12-18 09:04:23,852	44k	INFO	====> Epoch: 1733, cost 16.79 s
2023-12-18 09:04:40,081	44k	INFO	====> Epoch: 1734, cost 16.23 s
2023-12-18 09:04:56,235	44k	INFO	====> Epoch: 1735, cost 16.15 s
2023-12-18 09:05:12,515	44k	INFO	====> Epoch: 1736, cost 16.28 s
2023-12-18 09:05:28,706	44k	INFO	====> Epoch: 1737, cost 16.19 s
2023-12-18 09:05:44,862	44k	INFO	====> Epoch: 1738, cost 16.16 s
2023-12-18 09:06:01,089	44k	INFO	====> Epoch: 1739, cost 16.23 s
2023-12-18 09:06:17,410	44k	INFO	====> Epoch: 1740, cost 16.32 s
2023-12-18 09:06:33,582	44k	INFO	====> Epoch: 1741, cost 16.17 s
2023-12-18 09:06:49,825	44k	INFO	====> Epoch: 1742, cost 16.24 s
2023-12-18 09:07:06,193	44k	INFO	====> Epoch: 1743, cost 16.37 s
2023-12-18 09:07:22,460	44k	INFO	====> Epoch: 1744, cost 16.27 s
2023-12-18 09:07:38,679	44k	INFO	====> Epoch: 1745, cost 16.22 s
2023-12-18 09:07:54,350	44k	INFO	Train Epoch: 1746 [93%]
2023-12-18 09:07:54,350	44k	INFO	Losses: [2.04575514793396, 2.7847588062286377, 12.424880981445312, 21.24745750427246, 0.8558704853057861], step: 26200, lr: 8.038129793784715e-05, reference_loss: 39.35872268676758
2023-12-18 09:07:55,382	44k	INFO	====> Epoch: 1746, cost 16.70 s
2023-12-18 09:08:11,718	44k	INFO	====> Epoch: 1747, cost 16.34 s
2023-12-18 09:08:27,804	44k	INFO	====> Epoch: 1748, cost 16.09 s
2023-12-18 09:08:44,122	44k	INFO	====> Epoch: 1749, cost 16.32 s
2023-12-18 09:09:00,400	44k	INFO	====> Epoch: 1750, cost 16.28 s
2023-12-18 09:09:16,681	44k	INFO	====> Epoch: 1751, cost 16.28 s
2023-12-18 09:09:32,848	44k	INFO	====> Epoch: 1752, cost 16.17 s
2023-12-18 09:09:49,156	44k	INFO	====> Epoch: 1753, cost 16.31 s
2023-12-18 09:10:05,593	44k	INFO	====> Epoch: 1754, cost 16.44 s
2023-12-18 09:10:21,852	44k	INFO	====> Epoch: 1755, cost 16.26 s
2023-12-18 09:10:38,028	44k	INFO	====> Epoch: 1756, cost 16.18 s
2023-12-18 09:10:54,273	44k	INFO	====> Epoch: 1757, cost 16.25 s
2023-12-18 09:11:10,410	44k	INFO	====> Epoch: 1758, cost 16.14 s
2023-12-18 09:11:26,613	44k	INFO	====> Epoch: 1759, cost 16.20 s
2023-12-18 09:11:36,358	44k	INFO	Train Epoch: 1760 [27%]
2023-12-18 09:11:36,358	44k	INFO	Losses: [2.2471253871917725, 2.9541819095611572, 8.271241188049316, 18.114139556884766, 0.5552789568901062], step: 26400, lr: 8.024074490148745e-05, reference_loss: 32.1419677734375
2023-12-18 09:11:41,614	44k	INFO	Saving model and optimizer state at iteration 1760 to ./logs\44k\G_26400.pth
2023-12-18 09:11:43,045	44k	INFO	Saving model and optimizer state at iteration 1760 to ./logs\44k\D_26400.pth
2023-12-18 09:11:46,065	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_18400.pth
2023-12-18 09:11:46,065	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_18400.pth
2023-12-18 09:11:53,456	44k	INFO	====> Epoch: 1760, cost 26.84 s
2023-12-18 09:12:10,617	44k	INFO	====> Epoch: 1761, cost 17.16 s
2023-12-18 09:12:26,838	44k	INFO	====> Epoch: 1762, cost 16.22 s
2023-12-18 09:12:43,351	44k	INFO	====> Epoch: 1763, cost 16.51 s
2023-12-18 09:12:59,853	44k	INFO	====> Epoch: 1764, cost 16.50 s
2023-12-18 09:13:16,079	44k	INFO	====> Epoch: 1765, cost 16.23 s
2023-12-18 09:13:32,560	44k	INFO	====> Epoch: 1766, cost 16.48 s
2023-12-18 09:13:48,731	44k	INFO	====> Epoch: 1767, cost 16.17 s
2023-12-18 09:14:04,998	44k	INFO	====> Epoch: 1768, cost 16.27 s
2023-12-18 09:14:21,313	44k	INFO	====> Epoch: 1769, cost 16.32 s
2023-12-18 09:14:37,563	44k	INFO	====> Epoch: 1770, cost 16.25 s
2023-12-18 09:14:54,008	44k	INFO	====> Epoch: 1771, cost 16.45 s
2023-12-18 09:15:10,223	44k	INFO	====> Epoch: 1772, cost 16.21 s
2023-12-18 09:15:23,045	44k	INFO	Train Epoch: 1773 [60%]
2023-12-18 09:15:23,045	44k	INFO	Losses: [2.2851855754852295, 2.555488109588623, 9.116683006286621, 21.532739639282227, 1.0040562152862549], step: 26600, lr: 8.011045143962237e-05, reference_loss: 36.4941520690918
2023-12-18 09:15:27,070	44k	INFO	====> Epoch: 1773, cost 16.85 s
2023-12-18 09:15:43,528	44k	INFO	====> Epoch: 1774, cost 16.46 s
2023-12-18 09:15:59,743	44k	INFO	====> Epoch: 1775, cost 16.22 s
2023-12-18 09:16:16,141	44k	INFO	====> Epoch: 1776, cost 16.40 s
2023-12-18 09:16:32,442	44k	INFO	====> Epoch: 1777, cost 16.30 s
2023-12-18 09:16:48,820	44k	INFO	====> Epoch: 1778, cost 16.38 s
2023-12-18 09:17:05,164	44k	INFO	====> Epoch: 1779, cost 16.34 s
2023-12-18 09:17:21,363	44k	INFO	====> Epoch: 1780, cost 16.20 s
2023-12-18 09:17:37,628	44k	INFO	====> Epoch: 1781, cost 16.26 s
2023-12-18 09:17:53,924	44k	INFO	====> Epoch: 1782, cost 16.30 s
2023-12-18 09:18:10,298	44k	INFO	====> Epoch: 1783, cost 16.37 s
2023-12-18 09:18:26,491	44k	INFO	====> Epoch: 1784, cost 16.19 s
2023-12-18 09:18:42,821	44k	INFO	====> Epoch: 1785, cost 16.33 s
2023-12-18 09:18:58,579	44k	INFO	Train Epoch: 1786 [93%]
2023-12-18 09:18:58,579	44k	INFO	Losses: [2.145582914352417, 2.488348960876465, 8.986124038696289, 17.15497398376465, 0.010354717262089252], step: 26800, lr: 7.998036954591042e-05, reference_loss: 30.785385131835938
2023-12-18 09:18:59,652	44k	INFO	====> Epoch: 1786, cost 16.83 s
2023-12-18 09:19:16,256	44k	INFO	====> Epoch: 1787, cost 16.60 s
2023-12-18 09:19:32,459	44k	INFO	====> Epoch: 1788, cost 16.20 s
2023-12-18 09:19:48,760	44k	INFO	====> Epoch: 1789, cost 16.30 s
2023-12-18 09:20:05,093	44k	INFO	====> Epoch: 1790, cost 16.33 s
2023-12-18 09:20:21,300	44k	INFO	====> Epoch: 1791, cost 16.21 s
2023-12-18 09:20:37,398	44k	INFO	====> Epoch: 1792, cost 16.10 s
2023-12-18 09:20:53,560	44k	INFO	====> Epoch: 1793, cost 16.16 s
2023-12-18 09:21:09,804	44k	INFO	====> Epoch: 1794, cost 16.24 s
2023-12-18 09:21:26,036	44k	INFO	====> Epoch: 1795, cost 16.23 s
2023-12-18 09:21:42,202	44k	INFO	====> Epoch: 1796, cost 16.17 s
2023-12-18 09:21:58,542	44k	INFO	====> Epoch: 1797, cost 16.34 s
2023-12-18 09:22:14,856	44k	INFO	====> Epoch: 1798, cost 16.31 s
2023-12-18 09:22:31,276	44k	INFO	====> Epoch: 1799, cost 16.42 s
2023-12-18 09:22:40,894	44k	INFO	Train Epoch: 1800 [27%]
2023-12-18 09:22:40,894	44k	INFO	Losses: [2.0387461185455322, 3.2199182510375977, 10.608101844787598, 19.860836029052734, 0.5945751070976257], step: 27000, lr: 7.984051756445148e-05, reference_loss: 36.322174072265625
2023-12-18 09:22:48,097	44k	INFO	====> Epoch: 1800, cost 16.82 s
2023-12-18 09:23:04,352	44k	INFO	====> Epoch: 1801, cost 16.25 s
2023-12-18 09:23:20,560	44k	INFO	====> Epoch: 1802, cost 16.21 s
2023-12-18 09:23:36,795	44k	INFO	====> Epoch: 1803, cost 16.24 s
2023-12-18 09:23:53,027	44k	INFO	====> Epoch: 1804, cost 16.23 s
2023-12-18 09:24:09,455	44k	INFO	====> Epoch: 1805, cost 16.43 s
2023-12-18 09:24:25,801	44k	INFO	====> Epoch: 1806, cost 16.35 s
2023-12-18 09:24:42,129	44k	INFO	====> Epoch: 1807, cost 16.33 s
2023-12-18 09:24:58,405	44k	INFO	====> Epoch: 1808, cost 16.28 s
2023-12-18 09:25:14,619	44k	INFO	====> Epoch: 1809, cost 16.21 s
2023-12-18 09:25:30,847	44k	INFO	====> Epoch: 1810, cost 16.23 s
2023-12-18 09:25:47,071	44k	INFO	====> Epoch: 1811, cost 16.22 s
2023-12-18 09:26:03,323	44k	INFO	====> Epoch: 1812, cost 16.25 s
2023-12-18 09:26:16,037	44k	INFO	Train Epoch: 1813 [60%]
2023-12-18 09:26:16,037	44k	INFO	Losses: [2.354008436203003, 2.5334932804107666, 12.16633415222168, 21.32012367248535, 0.8521097302436829], step: 27200, lr: 7.971087398445551e-05, reference_loss: 39.226070404052734
2023-12-18 09:26:21,173	44k	INFO	Saving model and optimizer state at iteration 1813 to ./logs\44k\G_27200.pth
2023-12-18 09:26:22,463	44k	INFO	Saving model and optimizer state at iteration 1813 to ./logs\44k\D_27200.pth
2023-12-18 09:26:25,803	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_19200.pth
2023-12-18 09:26:25,803	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_19200.pth
2023-12-18 09:26:29,925	44k	INFO	====> Epoch: 1813, cost 26.60 s
2023-12-18 09:26:46,871	44k	INFO	====> Epoch: 1814, cost 16.95 s
2023-12-18 09:27:03,234	44k	INFO	====> Epoch: 1815, cost 16.36 s
2023-12-18 09:27:19,616	44k	INFO	====> Epoch: 1816, cost 16.38 s
2023-12-18 09:27:36,081	44k	INFO	====> Epoch: 1817, cost 16.46 s
2023-12-18 09:27:52,324	44k	INFO	====> Epoch: 1818, cost 16.24 s
2023-12-18 09:28:08,494	44k	INFO	====> Epoch: 1819, cost 16.17 s
2023-12-18 09:28:24,693	44k	INFO	====> Epoch: 1820, cost 16.20 s
2023-12-18 09:28:41,064	44k	INFO	====> Epoch: 1821, cost 16.37 s
2023-12-18 09:28:57,292	44k	INFO	====> Epoch: 1822, cost 16.23 s
2023-12-18 09:29:13,668	44k	INFO	====> Epoch: 1823, cost 16.38 s
2023-12-18 09:29:29,748	44k	INFO	====> Epoch: 1824, cost 16.08 s
2023-12-18 09:29:46,169	44k	INFO	====> Epoch: 1825, cost 16.42 s
2023-12-18 09:30:01,875	44k	INFO	Train Epoch: 1826 [93%]
2023-12-18 09:30:01,875	44k	INFO	Losses: [1.7687098979949951, 3.0839309692382812, 9.799501419067383, 17.285364151000977, 0.27982649207115173], step: 27400, lr: 7.958144091734628e-05, reference_loss: 32.21733474731445
2023-12-18 09:30:02,904	44k	INFO	====> Epoch: 1826, cost 16.73 s
2023-12-18 09:30:19,215	44k	INFO	====> Epoch: 1827, cost 16.31 s
2023-12-18 09:30:35,460	44k	INFO	====> Epoch: 1828, cost 16.24 s
2023-12-18 09:30:51,660	44k	INFO	====> Epoch: 1829, cost 16.20 s
2023-12-18 09:31:07,822	44k	INFO	====> Epoch: 1830, cost 16.16 s
2023-12-18 09:31:24,191	44k	INFO	====> Epoch: 1831, cost 16.37 s
2023-12-18 09:31:40,425	44k	INFO	====> Epoch: 1832, cost 16.23 s
2023-12-18 09:31:56,706	44k	INFO	====> Epoch: 1833, cost 16.28 s
2023-12-18 09:32:12,870	44k	INFO	====> Epoch: 1834, cost 16.16 s
2023-12-18 09:32:29,148	44k	INFO	====> Epoch: 1835, cost 16.28 s
2023-12-18 09:32:45,437	44k	INFO	====> Epoch: 1836, cost 16.29 s
2023-12-18 09:33:01,792	44k	INFO	====> Epoch: 1837, cost 16.36 s
2023-12-18 09:33:18,051	44k	INFO	====> Epoch: 1838, cost 16.26 s
2023-12-18 09:33:34,176	44k	INFO	====> Epoch: 1839, cost 16.13 s
2023-12-18 09:33:43,759	44k	INFO	Train Epoch: 1840 [27%]
2023-12-18 09:33:43,769	44k	INFO	Losses: [2.2256288528442383, 3.1922876834869385, 13.984726905822754, 23.24559211730957, 0.48959702253341675], step: 27600, lr: 7.94422864940442e-05, reference_loss: 43.13783264160156
2023-12-18 09:33:50,928	44k	INFO	====> Epoch: 1840, cost 16.75 s
2023-12-18 09:34:07,232	44k	INFO	====> Epoch: 1841, cost 16.30 s
2023-12-18 09:34:23,544	44k	INFO	====> Epoch: 1842, cost 16.31 s
2023-12-18 09:34:39,772	44k	INFO	====> Epoch: 1843, cost 16.23 s
2023-12-18 09:34:56,072	44k	INFO	====> Epoch: 1844, cost 16.30 s
2023-12-18 09:35:12,360	44k	INFO	====> Epoch: 1845, cost 16.29 s
2023-12-18 09:35:28,545	44k	INFO	====> Epoch: 1846, cost 16.18 s
2023-12-18 09:35:44,643	44k	INFO	====> Epoch: 1847, cost 16.10 s
2023-12-18 09:36:00,930	44k	INFO	====> Epoch: 1848, cost 16.29 s
2023-12-18 09:36:17,075	44k	INFO	====> Epoch: 1849, cost 16.15 s
2023-12-18 09:36:33,364	44k	INFO	====> Epoch: 1850, cost 16.29 s
2023-12-18 09:36:49,593	44k	INFO	====> Epoch: 1851, cost 16.23 s
2023-12-18 09:37:05,871	44k	INFO	====> Epoch: 1852, cost 16.28 s
2023-12-18 09:37:18,473	44k	INFO	Train Epoch: 1853 [60%]
2023-12-18 09:37:18,473	44k	INFO	Losses: [1.747084379196167, 3.2456276416778564, 11.77369499206543, 22.6661434173584, 0.6637884974479675], step: 27800, lr: 7.93132895544159e-05, reference_loss: 40.096336364746094
2023-12-18 09:37:22,490	44k	INFO	====> Epoch: 1853, cost 16.62 s
2023-12-18 09:37:38,641	44k	INFO	====> Epoch: 1854, cost 16.15 s
2023-12-18 09:37:54,969	44k	INFO	====> Epoch: 1855, cost 16.33 s
2023-12-18 09:38:11,162	44k	INFO	====> Epoch: 1856, cost 16.19 s
2023-12-18 09:38:27,371	44k	INFO	====> Epoch: 1857, cost 16.21 s
2023-12-18 09:38:43,390	44k	INFO	====> Epoch: 1858, cost 16.02 s
2023-12-18 09:38:59,598	44k	INFO	====> Epoch: 1859, cost 16.21 s
2023-12-18 09:39:15,936	44k	INFO	====> Epoch: 1860, cost 16.34 s
2023-12-18 09:39:32,149	44k	INFO	====> Epoch: 1861, cost 16.21 s
2023-12-18 09:39:48,318	44k	INFO	====> Epoch: 1862, cost 16.17 s
2023-12-18 09:40:04,709	44k	INFO	====> Epoch: 1863, cost 16.39 s
2023-12-18 09:40:21,076	44k	INFO	====> Epoch: 1864, cost 16.37 s
2023-12-18 09:40:37,277	44k	INFO	====> Epoch: 1865, cost 16.20 s
2023-12-18 09:40:52,972	44k	INFO	Train Epoch: 1866 [93%]
2023-12-18 09:40:52,972	44k	INFO	Losses: [1.9220346212387085, 2.894807815551758, 14.145669937133789, 16.25343132019043, 0.09651528298854828], step: 28000, lr: 7.918450207767153e-05, reference_loss: 35.31245803833008
2023-12-18 09:40:58,280	44k	INFO	Saving model and optimizer state at iteration 1866 to ./logs\44k\G_28000.pth
2023-12-18 09:40:59,518	44k	INFO	Saving model and optimizer state at iteration 1866 to ./logs\44k\D_28000.pth
2023-12-18 09:41:11,538	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_20000.pth
2023-12-18 09:41:11,658	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_20000.pth
2023-12-18 09:41:12,203	44k	INFO	====> Epoch: 1866, cost 34.93 s
2023-12-18 09:41:28,988	44k	INFO	====> Epoch: 1867, cost 16.78 s
2023-12-18 09:41:45,266	44k	INFO	====> Epoch: 1868, cost 16.28 s
2023-12-18 09:42:01,434	44k	INFO	====> Epoch: 1869, cost 16.17 s
2023-12-18 09:42:17,850	44k	INFO	====> Epoch: 1870, cost 16.42 s
2023-12-18 09:42:33,994	44k	INFO	====> Epoch: 1871, cost 16.14 s
2023-12-18 09:42:50,037	44k	INFO	====> Epoch: 1872, cost 16.04 s
2023-12-18 09:43:06,367	44k	INFO	====> Epoch: 1873, cost 16.33 s
2023-12-18 09:43:22,620	44k	INFO	====> Epoch: 1874, cost 16.25 s
2023-12-18 09:43:38,830	44k	INFO	====> Epoch: 1875, cost 16.21 s
2023-12-18 09:43:54,898	44k	INFO	====> Epoch: 1876, cost 16.07 s
2023-12-18 09:44:11,081	44k	INFO	====> Epoch: 1877, cost 16.18 s
2023-12-18 09:44:27,247	44k	INFO	====> Epoch: 1878, cost 16.17 s
2023-12-18 09:44:43,371	44k	INFO	====> Epoch: 1879, cost 16.12 s
2023-12-18 09:44:52,864	44k	INFO	Train Epoch: 1880 [27%]
2023-12-18 09:44:52,864	44k	INFO	Losses: [2.123248338699341, 3.180938243865967, 11.131062507629395, 18.673999786376953, 0.7869545817375183], step: 28200, lr: 7.904604173322357e-05, reference_loss: 35.896202087402344
2023-12-18 09:45:00,027	44k	INFO	====> Epoch: 1880, cost 16.66 s
2023-12-18 09:45:16,221	44k	INFO	====> Epoch: 1881, cost 16.19 s
2023-12-18 09:45:32,558	44k	INFO	====> Epoch: 1882, cost 16.34 s
2023-12-18 09:45:48,771	44k	INFO	====> Epoch: 1883, cost 16.21 s
2023-12-18 09:46:05,110	44k	INFO	====> Epoch: 1884, cost 16.34 s
2023-12-18 09:46:21,498	44k	INFO	====> Epoch: 1885, cost 16.39 s
2023-12-18 09:46:37,932	44k	INFO	====> Epoch: 1886, cost 16.43 s
2023-12-18 09:46:54,131	44k	INFO	====> Epoch: 1887, cost 16.20 s
2023-12-18 09:47:10,495	44k	INFO	====> Epoch: 1888, cost 16.36 s
2023-12-18 09:47:26,723	44k	INFO	====> Epoch: 1889, cost 16.23 s
2023-12-18 09:47:42,902	44k	INFO	====> Epoch: 1890, cost 16.18 s
2023-12-18 09:47:59,234	44k	INFO	====> Epoch: 1891, cost 16.33 s
2023-12-18 09:48:15,472	44k	INFO	====> Epoch: 1892, cost 16.24 s
2023-12-18 09:48:28,150	44k	INFO	Train Epoch: 1893 [60%]
2023-12-18 09:48:28,150	44k	INFO	Losses: [2.1985280513763428, 2.7213735580444336, 8.449751853942871, 18.924358367919922, 0.7978450655937195], step: 28400, lr: 7.891768820862956e-05, reference_loss: 33.09185791015625
2023-12-18 09:48:32,251	44k	INFO	====> Epoch: 1893, cost 16.78 s
2023-12-18 09:48:48,558	44k	INFO	====> Epoch: 1894, cost 16.31 s
2023-12-18 09:49:04,963	44k	INFO	====> Epoch: 1895, cost 16.40 s
2023-12-18 09:49:21,217	44k	INFO	====> Epoch: 1896, cost 16.25 s
2023-12-18 09:49:37,378	44k	INFO	====> Epoch: 1897, cost 16.16 s
2023-12-18 09:49:53,597	44k	INFO	====> Epoch: 1898, cost 16.22 s
2023-12-18 09:50:09,803	44k	INFO	====> Epoch: 1899, cost 16.21 s
2023-12-18 09:50:26,115	44k	INFO	====> Epoch: 1900, cost 16.31 s
2023-12-18 09:50:42,218	44k	INFO	====> Epoch: 1901, cost 16.10 s
2023-12-18 09:50:58,452	44k	INFO	====> Epoch: 1902, cost 16.23 s
2023-12-18 09:51:14,793	44k	INFO	====> Epoch: 1903, cost 16.34 s
2023-12-18 09:51:30,960	44k	INFO	====> Epoch: 1904, cost 16.17 s
2023-12-18 09:51:47,206	44k	INFO	====> Epoch: 1905, cost 16.25 s
2023-12-18 09:52:03,018	44k	INFO	Train Epoch: 1906 [93%]
2023-12-18 09:52:03,018	44k	INFO	Losses: [1.5832041501998901, 3.6108055114746094, 14.235448837280273, 19.98975944519043, 0.12866343557834625], step: 28600, lr: 7.878954310215385e-05, reference_loss: 39.547882080078125
2023-12-18 09:52:04,030	44k	INFO	====> Epoch: 1906, cost 16.82 s
2023-12-18 09:52:20,367	44k	INFO	====> Epoch: 1907, cost 16.34 s
2023-12-18 09:52:36,708	44k	INFO	====> Epoch: 1908, cost 16.34 s
2023-12-18 09:52:52,912	44k	INFO	====> Epoch: 1909, cost 16.20 s
2023-12-18 09:53:09,275	44k	INFO	====> Epoch: 1910, cost 16.36 s
2023-12-18 09:53:25,685	44k	INFO	====> Epoch: 1911, cost 16.41 s
2023-12-18 09:53:42,015	44k	INFO	====> Epoch: 1912, cost 16.33 s
2023-12-18 09:53:58,119	44k	INFO	====> Epoch: 1913, cost 16.10 s
2023-12-18 09:54:14,442	44k	INFO	====> Epoch: 1914, cost 16.32 s
2023-12-18 09:54:30,558	44k	INFO	====> Epoch: 1915, cost 16.12 s
2023-12-18 09:54:46,807	44k	INFO	====> Epoch: 1916, cost 16.25 s
2023-12-18 09:55:03,216	44k	INFO	====> Epoch: 1917, cost 16.41 s
2023-12-18 09:55:19,608	44k	INFO	====> Epoch: 1918, cost 16.39 s
2023-12-18 09:55:35,968	44k	INFO	====> Epoch: 1919, cost 16.36 s
2023-12-18 09:55:45,461	44k	INFO	Train Epoch: 1920 [27%]
2023-12-18 09:55:45,461	44k	INFO	Losses: [1.6066831350326538, 3.2297685146331787, 11.122459411621094, 22.862207412719727, 0.9498076438903809], step: 28800, lr: 7.865177337461142e-05, reference_loss: 39.77092361450195
2023-12-18 09:55:50,800	44k	INFO	Saving model and optimizer state at iteration 1920 to ./logs\44k\G_28800.pth
2023-12-18 09:55:52,286	44k	INFO	Saving model and optimizer state at iteration 1920 to ./logs\44k\D_28800.pth
2023-12-18 09:56:04,405	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_20800.pth
2023-12-18 09:56:04,454	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_20800.pth
2023-12-18 09:56:11,498	44k	INFO	====> Epoch: 1920, cost 35.53 s
2023-12-18 09:56:28,266	44k	INFO	====> Epoch: 1921, cost 16.77 s
2023-12-18 09:56:44,587	44k	INFO	====> Epoch: 1922, cost 16.32 s
2023-12-18 09:57:01,024	44k	INFO	====> Epoch: 1923, cost 16.44 s
2023-12-18 09:57:17,472	44k	INFO	====> Epoch: 1924, cost 16.45 s
2023-12-18 09:57:33,752	44k	INFO	====> Epoch: 1925, cost 16.28 s
2023-12-18 09:57:50,083	44k	INFO	====> Epoch: 1926, cost 16.33 s
2023-12-18 09:58:06,461	44k	INFO	====> Epoch: 1927, cost 16.38 s
2023-12-18 09:58:22,987	44k	INFO	====> Epoch: 1928, cost 16.53 s
2023-12-18 09:58:39,226	44k	INFO	====> Epoch: 1929, cost 16.24 s
2023-12-18 09:58:55,522	44k	INFO	====> Epoch: 1930, cost 16.30 s
2023-12-18 09:59:11,690	44k	INFO	====> Epoch: 1931, cost 16.17 s
2023-12-18 09:59:28,028	44k	INFO	====> Epoch: 1932, cost 16.34 s
2023-12-18 09:59:40,757	44k	INFO	Train Epoch: 1933 [60%]
2023-12-18 09:59:40,757	44k	INFO	Losses: [1.992563009262085, 2.9708750247955322, 9.389686584472656, 18.6323184967041, 0.37348514795303345], step: 29000, lr: 7.852406005580576e-05, reference_loss: 33.35892868041992
2023-12-18 09:59:44,790	44k	INFO	====> Epoch: 1933, cost 16.76 s
2023-12-18 10:00:01,170	44k	INFO	====> Epoch: 1934, cost 16.38 s
2023-12-18 10:00:17,437	44k	INFO	====> Epoch: 1935, cost 16.27 s
2023-12-18 10:00:33,693	44k	INFO	====> Epoch: 1936, cost 16.26 s
2023-12-18 10:00:49,891	44k	INFO	====> Epoch: 1937, cost 16.20 s
2023-12-18 10:01:06,178	44k	INFO	====> Epoch: 1938, cost 16.29 s
2023-12-18 10:01:22,581	44k	INFO	====> Epoch: 1939, cost 16.40 s
2023-12-18 10:01:38,847	44k	INFO	====> Epoch: 1940, cost 16.27 s
2023-12-18 10:01:55,178	44k	INFO	====> Epoch: 1941, cost 16.33 s
2023-12-18 10:02:11,391	44k	INFO	====> Epoch: 1942, cost 16.21 s
2023-12-18 10:02:27,637	44k	INFO	====> Epoch: 1943, cost 16.25 s
2023-12-18 10:02:44,217	44k	INFO	====> Epoch: 1944, cost 16.58 s
2023-12-18 10:03:00,401	44k	INFO	====> Epoch: 1945, cost 16.18 s
2023-12-18 10:03:16,122	44k	INFO	Train Epoch: 1946 [93%]
2023-12-18 10:03:16,122	44k	INFO	Losses: [2.1467533111572266, 2.6842918395996094, 11.939395904541016, 18.921878814697266, 0.5926773548126221], step: 29200, lr: 7.839655411556386e-05, reference_loss: 36.28499984741211
2023-12-18 10:03:17,211	44k	INFO	====> Epoch: 1946, cost 16.81 s
2023-12-18 10:03:33,385	44k	INFO	====> Epoch: 1947, cost 16.17 s
2023-12-18 10:03:49,489	44k	INFO	====> Epoch: 1948, cost 16.10 s
2023-12-18 10:04:05,797	44k	INFO	====> Epoch: 1949, cost 16.31 s
2023-12-18 10:04:22,115	44k	INFO	====> Epoch: 1950, cost 16.32 s
2023-12-18 10:04:38,288	44k	INFO	====> Epoch: 1951, cost 16.17 s
2023-12-18 10:04:54,520	44k	INFO	====> Epoch: 1952, cost 16.23 s
2023-12-18 10:05:10,773	44k	INFO	====> Epoch: 1953, cost 16.25 s
2023-12-18 10:05:26,933	44k	INFO	====> Epoch: 1954, cost 16.16 s
2023-12-18 10:05:43,320	44k	INFO	====> Epoch: 1955, cost 16.39 s
2023-12-18 10:05:59,623	44k	INFO	====> Epoch: 1956, cost 16.30 s
2023-12-18 10:06:15,993	44k	INFO	====> Epoch: 1957, cost 16.37 s
2023-12-18 10:06:32,267	44k	INFO	====> Epoch: 1958, cost 16.27 s
2023-12-18 10:06:48,515	44k	INFO	====> Epoch: 1959, cost 16.25 s
2023-12-18 10:06:58,085	44k	INFO	Train Epoch: 1960 [27%]
2023-12-18 10:06:58,085	44k	INFO	Losses: [2.04026460647583, 2.6911511421203613, 10.780580520629883, 19.019798278808594, 0.4454192519187927], step: 29400, lr: 7.825947156024605e-05, reference_loss: 34.97721481323242
2023-12-18 10:07:05,218	44k	INFO	====> Epoch: 1960, cost 16.70 s
2023-12-18 10:07:21,391	44k	INFO	====> Epoch: 1961, cost 16.17 s
2023-12-18 10:07:37,624	44k	INFO	====> Epoch: 1962, cost 16.23 s
2023-12-18 10:07:53,689	44k	INFO	====> Epoch: 1963, cost 16.06 s
2023-12-18 10:08:10,039	44k	INFO	====> Epoch: 1964, cost 16.35 s
2023-12-18 10:08:26,309	44k	INFO	====> Epoch: 1965, cost 16.27 s
2023-12-18 10:08:42,537	44k	INFO	====> Epoch: 1966, cost 16.23 s
2023-12-18 10:08:58,697	44k	INFO	====> Epoch: 1967, cost 16.16 s
2023-12-18 10:09:15,015	44k	INFO	====> Epoch: 1968, cost 16.32 s
2023-12-18 10:09:31,273	44k	INFO	====> Epoch: 1969, cost 16.26 s
2023-12-18 10:09:47,540	44k	INFO	====> Epoch: 1970, cost 16.27 s
2023-12-18 10:10:04,066	44k	INFO	====> Epoch: 1971, cost 16.53 s
2023-12-18 10:10:20,310	44k	INFO	====> Epoch: 1972, cost 16.24 s
2023-12-18 10:10:33,147	44k	INFO	Train Epoch: 1973 [60%]
2023-12-18 10:10:33,147	44k	INFO	Losses: [1.8937240839004517, 2.663097381591797, 13.549813270568848, 20.61578369140625, 0.872254490852356], step: 29600, lr: 7.813239525398997e-05, reference_loss: 39.59467315673828
2023-12-18 10:10:38,646	44k	INFO	Saving model and optimizer state at iteration 1973 to ./logs\44k\G_29600.pth
2023-12-18 10:10:40,113	44k	INFO	Saving model and optimizer state at iteration 1973 to ./logs\44k\D_29600.pth
2023-12-18 10:10:54,057	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_21600.pth
2023-12-18 10:10:54,680	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_21600.pth
2023-12-18 10:10:58,688	44k	INFO	====> Epoch: 1973, cost 38.38 s
2023-12-18 10:11:15,232	44k	INFO	====> Epoch: 1974, cost 16.54 s
2023-12-18 10:11:31,634	44k	INFO	====> Epoch: 1975, cost 16.40 s
2023-12-18 10:11:47,944	44k	INFO	====> Epoch: 1976, cost 16.31 s
2023-12-18 10:12:04,097	44k	INFO	====> Epoch: 1977, cost 16.15 s
2023-12-18 10:12:20,657	44k	INFO	====> Epoch: 1978, cost 16.56 s
2023-12-18 10:12:36,966	44k	INFO	====> Epoch: 1979, cost 16.31 s
2023-12-18 10:12:53,258	44k	INFO	====> Epoch: 1980, cost 16.29 s
2023-12-18 10:13:09,405	44k	INFO	====> Epoch: 1981, cost 16.15 s
2023-12-18 10:13:25,552	44k	INFO	====> Epoch: 1982, cost 16.15 s
2023-12-18 10:13:41,753	44k	INFO	====> Epoch: 1983, cost 16.20 s
2023-12-18 10:13:58,078	44k	INFO	====> Epoch: 1984, cost 16.32 s
2023-12-18 10:14:14,672	44k	INFO	====> Epoch: 1985, cost 16.58 s
2023-12-18 10:14:30,431	44k	INFO	Train Epoch: 1986 [93%]
2023-12-18 10:14:30,431	44k	INFO	Losses: [1.9327971935272217, 3.0963222980499268, 9.649613380432129, 17.66571617126465, 0.2623206079006195], step: 29800, lr: 7.800552529192829e-05, reference_loss: 32.60676956176758
2023-12-18 10:14:31,466	44k	INFO	====> Epoch: 1986, cost 16.80 s
2023-12-18 10:14:47,782	44k	INFO	====> Epoch: 1987, cost 16.32 s
2023-12-18 10:15:04,054	44k	INFO	====> Epoch: 1988, cost 16.27 s
2023-12-18 10:15:20,368	44k	INFO	====> Epoch: 1989, cost 16.31 s
2023-12-18 10:15:36,745	44k	INFO	====> Epoch: 1990, cost 16.38 s
2023-12-18 10:15:53,101	44k	INFO	====> Epoch: 1991, cost 16.36 s
2023-12-18 10:16:09,315	44k	INFO	====> Epoch: 1992, cost 16.21 s
2023-12-18 10:16:25,759	44k	INFO	====> Epoch: 1993, cost 16.44 s
2023-12-18 10:16:42,312	44k	INFO	====> Epoch: 1994, cost 16.55 s
2023-12-18 10:16:58,552	44k	INFO	====> Epoch: 1995, cost 16.24 s
2023-12-18 10:17:14,862	44k	INFO	====> Epoch: 1996, cost 16.31 s
2023-12-18 10:17:31,144	44k	INFO	====> Epoch: 1997, cost 16.28 s
2023-12-18 10:17:47,306	44k	INFO	====> Epoch: 1998, cost 16.16 s
2023-12-18 10:18:03,535	44k	INFO	====> Epoch: 1999, cost 16.23 s
2023-12-18 10:18:13,171	44k	INFO	Train Epoch: 2000 [27%]
2023-12-18 10:18:13,171	44k	INFO	Losses: [1.8719959259033203, 3.1042652130126953, 10.687170028686523, 18.92031478881836, 1.0546483993530273], step: 30000, lr: 7.786912648133565e-05, reference_loss: 35.638397216796875
2023-12-18 10:18:20,416	44k	INFO	====> Epoch: 2000, cost 16.88 s
2023-12-18 10:18:36,663	44k	INFO	====> Epoch: 2001, cost 16.25 s
2023-12-18 10:18:53,027	44k	INFO	====> Epoch: 2002, cost 16.36 s
2023-12-18 10:19:09,311	44k	INFO	====> Epoch: 2003, cost 16.28 s
2023-12-18 10:19:25,741	44k	INFO	====> Epoch: 2004, cost 16.43 s
2023-12-18 10:19:42,029	44k	INFO	====> Epoch: 2005, cost 16.29 s
2023-12-18 10:19:58,304	44k	INFO	====> Epoch: 2006, cost 16.28 s
2023-12-18 10:20:14,393	44k	INFO	====> Epoch: 2007, cost 16.09 s
2023-12-18 10:20:30,675	44k	INFO	====> Epoch: 2008, cost 16.28 s
2023-12-18 10:20:47,057	44k	INFO	====> Epoch: 2009, cost 16.38 s
2023-12-18 10:21:03,427	44k	INFO	====> Epoch: 2010, cost 16.37 s
2023-12-18 10:21:19,804	44k	INFO	====> Epoch: 2011, cost 16.38 s
2023-12-18 10:21:36,216	44k	INFO	====> Epoch: 2012, cost 16.41 s
2023-12-18 10:21:48,876	44k	INFO	Train Epoch: 2013 [60%]
2023-12-18 10:21:48,886	44k	INFO	Losses: [1.902477502822876, 3.2247676849365234, 12.021904945373535, 19.866422653198242, 0.6179165244102478], step: 30200, lr: 7.774268401031771e-05, reference_loss: 37.633487701416016
2023-12-18 10:21:52,960	44k	INFO	====> Epoch: 2013, cost 16.74 s
2023-12-18 10:22:09,202	44k	INFO	====> Epoch: 2014, cost 16.24 s
2023-12-18 10:22:25,430	44k	INFO	====> Epoch: 2015, cost 16.23 s
2023-12-18 10:22:41,615	44k	INFO	====> Epoch: 2016, cost 16.18 s
2023-12-18 10:22:57,851	44k	INFO	====> Epoch: 2017, cost 16.24 s
2023-12-18 10:23:14,196	44k	INFO	====> Epoch: 2018, cost 16.35 s
2023-12-18 10:23:30,388	44k	INFO	====> Epoch: 2019, cost 16.19 s
2023-12-18 10:23:46,816	44k	INFO	====> Epoch: 2020, cost 16.43 s
2023-12-18 10:24:03,059	44k	INFO	====> Epoch: 2021, cost 16.24 s
2023-12-18 10:24:19,377	44k	INFO	====> Epoch: 2022, cost 16.32 s
2023-12-18 10:24:35,586	44k	INFO	====> Epoch: 2023, cost 16.21 s
2023-12-18 10:24:51,897	44k	INFO	====> Epoch: 2024, cost 16.31 s
2023-12-18 10:25:08,223	44k	INFO	====> Epoch: 2025, cost 16.33 s
2023-12-18 10:25:23,824	44k	INFO	Train Epoch: 2026 [93%]
2023-12-18 10:25:23,824	44k	INFO	Losses: [1.6962676048278809, 3.242138385772705, 11.306113243103027, 18.096586227416992, 0.5246453881263733], step: 30400, lr: 7.761644685428404e-05, reference_loss: 34.86574935913086
2023-12-18 10:25:28,999	44k	INFO	Saving model and optimizer state at iteration 2026 to ./logs\44k\G_30400.pth
2023-12-18 10:25:30,331	44k	INFO	Saving model and optimizer state at iteration 2026 to ./logs\44k\D_30400.pth
2023-12-18 10:25:35,580	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_22400.pth
2023-12-18 10:25:35,649	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_22400.pth
2023-12-18 10:25:36,209	44k	INFO	====> Epoch: 2026, cost 27.99 s
2023-12-18 10:25:53,138	44k	INFO	====> Epoch: 2027, cost 16.93 s
2023-12-18 10:26:09,609	44k	INFO	====> Epoch: 2028, cost 16.47 s
2023-12-18 10:26:25,850	44k	INFO	====> Epoch: 2029, cost 16.24 s
2023-12-18 10:26:42,055	44k	INFO	====> Epoch: 2030, cost 16.20 s
2023-12-18 10:26:58,269	44k	INFO	====> Epoch: 2031, cost 16.21 s
2023-12-18 10:27:14,692	44k	INFO	====> Epoch: 2032, cost 16.42 s
2023-12-18 10:27:31,082	44k	INFO	====> Epoch: 2033, cost 16.39 s
2023-12-18 10:27:47,362	44k	INFO	====> Epoch: 2034, cost 16.28 s
2023-12-18 10:28:03,678	44k	INFO	====> Epoch: 2035, cost 16.32 s
2023-12-18 10:28:19,909	44k	INFO	====> Epoch: 2036, cost 16.23 s
2023-12-18 10:28:36,309	44k	INFO	====> Epoch: 2037, cost 16.40 s
2023-12-18 10:28:52,784	44k	INFO	====> Epoch: 2038, cost 16.48 s
2023-12-18 10:29:09,219	44k	INFO	====> Epoch: 2039, cost 16.43 s
2023-12-18 10:29:18,912	44k	INFO	Train Epoch: 2040 [27%]
2023-12-18 10:29:18,912	44k	INFO	Losses: [2.412411689758301, 2.6060197353363037, 5.888246536254883, 16.89883804321289, 0.46194395422935486], step: 30600, lr: 7.748072837801289e-05, reference_loss: 28.267459869384766
2023-12-18 10:29:26,103	44k	INFO	====> Epoch: 2040, cost 16.88 s
2023-12-18 10:29:42,658	44k	INFO	====> Epoch: 2041, cost 16.55 s
2023-12-18 10:29:58,854	44k	INFO	====> Epoch: 2042, cost 16.20 s
2023-12-18 10:30:15,057	44k	INFO	====> Epoch: 2043, cost 16.20 s
2023-12-18 10:30:31,412	44k	INFO	====> Epoch: 2044, cost 16.35 s
2023-12-18 10:30:47,664	44k	INFO	====> Epoch: 2045, cost 16.25 s
2023-12-18 10:31:03,967	44k	INFO	====> Epoch: 2046, cost 16.30 s
2023-12-18 10:31:20,392	44k	INFO	====> Epoch: 2047, cost 16.42 s
2023-12-18 10:31:36,719	44k	INFO	====> Epoch: 2048, cost 16.33 s
2023-12-18 10:31:53,025	44k	INFO	====> Epoch: 2049, cost 16.31 s
2023-12-18 10:32:09,153	44k	INFO	====> Epoch: 2050, cost 16.13 s
2023-12-18 10:32:25,477	44k	INFO	====> Epoch: 2051, cost 16.32 s
2023-12-18 10:32:41,888	44k	INFO	====> Epoch: 2052, cost 16.41 s
2023-12-18 10:32:54,645	44k	INFO	Train Epoch: 2053 [60%]
2023-12-18 10:32:54,645	44k	INFO	Losses: [2.101926565170288, 2.5368237495422363, 10.788867950439453, 21.322282791137695, 0.5628498196601868], step: 30800, lr: 7.735491658076955e-05, reference_loss: 37.31275177001953
2023-12-18 10:32:58,765	44k	INFO	====> Epoch: 2053, cost 16.88 s
2023-12-18 10:33:14,991	44k	INFO	====> Epoch: 2054, cost 16.23 s
2023-12-18 10:33:31,178	44k	INFO	====> Epoch: 2055, cost 16.19 s
2023-12-18 10:33:47,452	44k	INFO	====> Epoch: 2056, cost 16.27 s
2023-12-18 10:34:03,824	44k	INFO	====> Epoch: 2057, cost 16.37 s
2023-12-18 10:34:20,208	44k	INFO	====> Epoch: 2058, cost 16.38 s
2023-12-18 10:34:36,455	44k	INFO	====> Epoch: 2059, cost 16.25 s
2023-12-18 10:34:52,842	44k	INFO	====> Epoch: 2060, cost 16.39 s
2023-12-18 10:35:09,179	44k	INFO	====> Epoch: 2061, cost 16.34 s
2023-12-18 10:35:25,407	44k	INFO	====> Epoch: 2062, cost 16.23 s
2023-12-18 10:35:41,936	44k	INFO	====> Epoch: 2063, cost 16.53 s
2023-12-18 10:35:58,194	44k	INFO	====> Epoch: 2064, cost 16.26 s
2023-12-18 10:36:14,418	44k	INFO	====> Epoch: 2065, cost 16.22 s
2023-12-18 10:36:30,209	44k	INFO	Train Epoch: 2066 [93%]
2023-12-18 10:36:30,209	44k	INFO	Losses: [1.3651131391525269, 3.369978666305542, 16.689699172973633, 18.285642623901367, 0.9313102960586548], step: 31000, lr: 7.722930907443384e-05, reference_loss: 40.64174270629883
2023-12-18 10:36:31,252	44k	INFO	====> Epoch: 2066, cost 16.83 s
2023-12-18 10:36:47,588	44k	INFO	====> Epoch: 2067, cost 16.34 s
2023-12-18 10:37:03,953	44k	INFO	====> Epoch: 2068, cost 16.37 s
2023-12-18 10:37:20,334	44k	INFO	====> Epoch: 2069, cost 16.38 s
2023-12-18 10:37:36,614	44k	INFO	====> Epoch: 2070, cost 16.28 s
2023-12-18 10:37:52,980	44k	INFO	====> Epoch: 2071, cost 16.37 s
2023-12-18 10:38:09,371	44k	INFO	====> Epoch: 2072, cost 16.39 s
2023-12-18 10:38:25,457	44k	INFO	====> Epoch: 2073, cost 16.09 s
2023-12-18 10:38:41,711	44k	INFO	====> Epoch: 2074, cost 16.25 s
2023-12-18 10:38:57,928	44k	INFO	====> Epoch: 2075, cost 16.22 s
2023-12-18 10:39:14,121	44k	INFO	====> Epoch: 2076, cost 16.19 s
2023-12-18 10:39:30,372	44k	INFO	====> Epoch: 2077, cost 16.25 s
2023-12-18 10:39:46,685	44k	INFO	====> Epoch: 2078, cost 16.31 s
2023-12-18 10:40:03,199	44k	INFO	====> Epoch: 2079, cost 16.51 s
2023-12-18 10:40:12,879	44k	INFO	Train Epoch: 2080 [27%]
2023-12-18 10:40:12,879	44k	INFO	Losses: [2.4098665714263916, 3.1288912296295166, 11.169779777526855, 19.77461814880371, 0.7812569737434387], step: 31200, lr: 7.709426753909104e-05, reference_loss: 37.26441192626953
2023-12-18 10:40:18,191	44k	INFO	Saving model and optimizer state at iteration 2080 to ./logs\44k\G_31200.pth
2023-12-18 10:40:19,461	44k	INFO	Saving model and optimizer state at iteration 2080 to ./logs\44k\D_31200.pth
2023-12-18 10:40:24,231	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_23200.pth
2023-12-18 10:40:24,251	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_23200.pth
2023-12-18 10:40:31,496	44k	INFO	====> Epoch: 2080, cost 28.30 s
2023-12-18 10:40:48,406	44k	INFO	====> Epoch: 2081, cost 16.91 s
2023-12-18 10:41:04,762	44k	INFO	====> Epoch: 2082, cost 16.36 s
2023-12-18 10:41:21,449	44k	INFO	====> Epoch: 2083, cost 16.69 s
2023-12-18 10:41:37,917	44k	INFO	====> Epoch: 2084, cost 16.47 s
2023-12-18 10:41:54,215	44k	INFO	====> Epoch: 2085, cost 16.30 s
2023-12-18 10:42:10,599	44k	INFO	====> Epoch: 2086, cost 16.38 s
2023-12-18 10:42:26,978	44k	INFO	====> Epoch: 2087, cost 16.38 s
2023-12-18 10:42:43,297	44k	INFO	====> Epoch: 2088, cost 16.32 s
2023-12-18 10:42:59,704	44k	INFO	====> Epoch: 2089, cost 16.41 s
2023-12-18 10:43:16,128	44k	INFO	====> Epoch: 2090, cost 16.42 s
2023-12-18 10:43:32,431	44k	INFO	====> Epoch: 2091, cost 16.30 s
2023-12-18 10:43:48,921	44k	INFO	====> Epoch: 2092, cost 16.49 s
2023-12-18 10:44:01,721	44k	INFO	Train Epoch: 2093 [60%]
2023-12-18 10:44:01,721	44k	INFO	Losses: [2.189920425415039, 2.792755126953125, 12.944823265075684, 24.886192321777344, 0.6519286036491394], step: 31400, lr: 7.696908326992759e-05, reference_loss: 43.46561813354492
2023-12-18 10:44:05,768	44k	INFO	====> Epoch: 2093, cost 16.85 s
2023-12-18 10:44:22,030	44k	INFO	====> Epoch: 2094, cost 16.26 s
2023-12-18 10:44:38,385	44k	INFO	====> Epoch: 2095, cost 16.36 s
2023-12-18 10:44:54,666	44k	INFO	====> Epoch: 2096, cost 16.28 s
2023-12-18 10:45:11,117	44k	INFO	====> Epoch: 2097, cost 16.45 s
2023-12-18 10:45:27,436	44k	INFO	====> Epoch: 2098, cost 16.32 s
2023-12-18 10:45:43,713	44k	INFO	====> Epoch: 2099, cost 16.28 s
2023-12-18 10:46:00,051	44k	INFO	====> Epoch: 2100, cost 16.34 s
2023-12-18 10:46:16,450	44k	INFO	====> Epoch: 2101, cost 16.40 s
2023-12-18 10:46:33,092	44k	INFO	====> Epoch: 2102, cost 16.64 s
2023-12-18 10:46:49,435	44k	INFO	====> Epoch: 2103, cost 16.34 s
2023-12-18 10:47:05,836	44k	INFO	====> Epoch: 2104, cost 16.40 s
2023-12-18 10:47:22,274	44k	INFO	====> Epoch: 2105, cost 16.44 s
2023-12-18 10:47:38,069	44k	INFO	Train Epoch: 2106 [93%]
2023-12-18 10:47:38,069	44k	INFO	Losses: [1.2304956912994385, 3.7341294288635254, 18.536252975463867, 23.022418975830078, -0.14643454551696777], step: 31600, lr: 7.684410227270316e-05, reference_loss: 46.376861572265625
2023-12-18 10:47:39,078	44k	INFO	====> Epoch: 2106, cost 16.80 s
2023-12-18 10:47:55,622	44k	INFO	====> Epoch: 2107, cost 16.54 s
2023-12-18 10:48:12,065	44k	INFO	====> Epoch: 2108, cost 16.44 s
2023-12-18 10:48:28,395	44k	INFO	====> Epoch: 2109, cost 16.33 s
2023-12-18 10:48:44,771	44k	INFO	====> Epoch: 2110, cost 16.38 s
2023-12-18 10:49:00,985	44k	INFO	====> Epoch: 2111, cost 16.21 s
2023-12-18 10:49:17,394	44k	INFO	====> Epoch: 2112, cost 16.41 s
2023-12-18 10:49:33,756	44k	INFO	====> Epoch: 2113, cost 16.36 s
2023-12-18 10:49:50,270	44k	INFO	====> Epoch: 2114, cost 16.51 s
2023-12-18 10:50:06,526	44k	INFO	====> Epoch: 2115, cost 16.26 s
2023-12-18 10:50:22,757	44k	INFO	====> Epoch: 2116, cost 16.23 s
2023-12-18 10:50:39,212	44k	INFO	====> Epoch: 2117, cost 16.45 s
2023-12-18 10:50:55,579	44k	INFO	====> Epoch: 2118, cost 16.37 s
2023-12-18 10:51:12,182	44k	INFO	====> Epoch: 2119, cost 16.60 s
2023-12-18 10:51:21,958	44k	INFO	Train Epoch: 2120 [27%]
2023-12-18 10:51:21,958	44k	INFO	Losses: [2.4455418586730957, 2.476118803024292, 7.330844402313232, 18.125600814819336, 0.5132375955581665], step: 31800, lr: 7.670973430182125e-05, reference_loss: 30.891342163085938
2023-12-18 10:51:29,225	44k	INFO	====> Epoch: 2120, cost 17.04 s
2023-12-18 10:51:45,522	44k	INFO	====> Epoch: 2121, cost 16.30 s
2023-12-18 10:52:01,868	44k	INFO	====> Epoch: 2122, cost 16.35 s
2023-12-18 10:52:18,372	44k	INFO	====> Epoch: 2123, cost 16.50 s
2023-12-18 10:52:34,607	44k	INFO	====> Epoch: 2124, cost 16.23 s
2023-12-18 10:52:50,972	44k	INFO	====> Epoch: 2125, cost 16.37 s
2023-12-18 10:53:07,342	44k	INFO	====> Epoch: 2126, cost 16.37 s
2023-12-18 10:53:23,631	44k	INFO	====> Epoch: 2127, cost 16.29 s
2023-12-18 10:53:39,969	44k	INFO	====> Epoch: 2128, cost 16.34 s
2023-12-18 10:53:56,517	44k	INFO	====> Epoch: 2129, cost 16.55 s
2023-12-18 10:54:12,756	44k	INFO	====> Epoch: 2130, cost 16.24 s
2023-12-18 10:54:29,047	44k	INFO	====> Epoch: 2131, cost 16.29 s
2023-12-18 10:54:45,540	44k	INFO	====> Epoch: 2132, cost 16.49 s
2023-12-18 10:54:58,370	44k	INFO	Train Epoch: 2133 [60%]
2023-12-18 10:54:58,370	44k	INFO	Losses: [1.8762805461883545, 3.041628360748291, 12.796360969543457, 19.20253562927246, 0.7277417182922363], step: 32000, lr: 7.658517443073324e-05, reference_loss: 37.64454650878906
2023-12-18 10:55:03,707	44k	INFO	Saving model and optimizer state at iteration 2133 to ./logs\44k\G_32000.pth
2023-12-18 10:55:05,014	44k	INFO	Saving model and optimizer state at iteration 2133 to ./logs\44k\D_32000.pth
2023-12-18 10:55:11,364	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_24000.pth
2023-12-18 10:55:11,374	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_24000.pth
2023-12-18 10:55:15,546	44k	INFO	====> Epoch: 2133, cost 30.01 s
2023-12-18 10:55:32,772	44k	INFO	====> Epoch: 2134, cost 17.23 s
2023-12-18 10:55:49,142	44k	INFO	====> Epoch: 2135, cost 16.37 s
2023-12-18 10:56:05,470	44k	INFO	====> Epoch: 2136, cost 16.33 s
2023-12-18 10:56:21,773	44k	INFO	====> Epoch: 2137, cost 16.30 s
2023-12-18 10:56:38,231	44k	INFO	====> Epoch: 2138, cost 16.46 s
2023-12-18 10:56:54,671	44k	INFO	====> Epoch: 2139, cost 16.44 s
2023-12-18 10:57:11,001	44k	INFO	====> Epoch: 2140, cost 16.33 s
2023-12-18 10:57:27,209	44k	INFO	====> Epoch: 2141, cost 16.21 s
2023-12-18 10:57:43,602	44k	INFO	====> Epoch: 2142, cost 16.39 s
2023-12-18 10:57:59,850	44k	INFO	====> Epoch: 2143, cost 16.25 s
2023-12-18 10:58:16,253	44k	INFO	====> Epoch: 2144, cost 16.39 s
2023-12-18 10:58:32,549	44k	INFO	====> Epoch: 2145, cost 16.31 s
2023-12-18 10:58:48,299	44k	INFO	Train Epoch: 2146 [93%]
2023-12-18 10:58:48,299	44k	INFO	Losses: [1.207231879234314, 3.543466091156006, 15.431828498840332, 17.778871536254883, 0.055150873959064484], step: 32200, lr: 7.646081681769796e-05, reference_loss: 38.016544342041016
2023-12-18 10:58:49,319	44k	INFO	====> Epoch: 2146, cost 16.77 s
2023-12-18 10:59:05,766	44k	INFO	====> Epoch: 2147, cost 16.45 s
2023-12-18 10:59:22,493	44k	INFO	====> Epoch: 2148, cost 16.73 s
2023-12-18 10:59:38,751	44k	INFO	====> Epoch: 2149, cost 16.26 s
2023-12-18 10:59:55,272	44k	INFO	====> Epoch: 2150, cost 16.52 s
2023-12-18 11:00:11,790	44k	INFO	====> Epoch: 2151, cost 16.52 s
2023-12-18 11:00:28,167	44k	INFO	====> Epoch: 2152, cost 16.38 s
2023-12-18 11:00:44,493	44k	INFO	====> Epoch: 2153, cost 16.33 s
2023-12-18 11:01:00,751	44k	INFO	====> Epoch: 2154, cost 16.25 s
2023-12-18 11:01:17,301	44k	INFO	====> Epoch: 2155, cost 16.56 s
2023-12-18 11:01:33,732	44k	INFO	====> Epoch: 2156, cost 16.43 s
2023-12-18 11:01:50,176	44k	INFO	====> Epoch: 2157, cost 16.44 s
2023-12-18 11:02:06,564	44k	INFO	====> Epoch: 2158, cost 16.39 s
2023-12-18 11:02:23,008	44k	INFO	====> Epoch: 2159, cost 16.44 s
2023-12-18 11:02:32,685	44k	INFO	Train Epoch: 2160 [27%]
2023-12-18 11:02:32,695	44k	INFO	Losses: [1.5874969959259033, 3.6782279014587402, 12.69244384765625, 23.538314819335938, 0.6592702865600586], step: 32400, lr: 7.632711905165067e-05, reference_loss: 42.15575408935547
2023-12-18 11:02:39,878	44k	INFO	====> Epoch: 2160, cost 16.87 s
2023-12-18 11:02:56,259	44k	INFO	====> Epoch: 2161, cost 16.38 s
2023-12-18 11:03:12,599	44k	INFO	====> Epoch: 2162, cost 16.34 s
2023-12-18 11:03:28,804	44k	INFO	====> Epoch: 2163, cost 16.21 s
2023-12-18 11:03:45,028	44k	INFO	====> Epoch: 2164, cost 16.22 s
2023-12-18 11:04:01,375	44k	INFO	====> Epoch: 2165, cost 16.35 s
2023-12-18 11:04:17,740	44k	INFO	====> Epoch: 2166, cost 16.37 s
2023-12-18 11:04:34,223	44k	INFO	====> Epoch: 2167, cost 16.48 s
2023-12-18 11:04:50,921	44k	INFO	====> Epoch: 2168, cost 16.70 s
2023-12-18 11:05:07,160	44k	INFO	====> Epoch: 2169, cost 16.24 s
2023-12-18 11:05:23,665	44k	INFO	====> Epoch: 2170, cost 16.50 s
2023-12-18 11:05:39,986	44k	INFO	====> Epoch: 2171, cost 16.32 s
2023-12-18 11:05:56,278	44k	INFO	====> Epoch: 2172, cost 16.29 s
2023-12-18 11:06:09,071	44k	INFO	Train Epoch: 2173 [60%]
2023-12-18 11:06:09,071	44k	INFO	Losses: [1.970259428024292, 2.8494205474853516, 12.478228569030762, 19.962446212768555, 0.7334083318710327], step: 32600, lr: 7.620318046424553e-05, reference_loss: 37.9937629699707
2023-12-18 11:06:13,168	44k	INFO	====> Epoch: 2173, cost 16.89 s
2023-12-18 11:06:29,677	44k	INFO	====> Epoch: 2174, cost 16.51 s
2023-12-18 11:06:46,207	44k	INFO	====> Epoch: 2175, cost 16.53 s
2023-12-18 11:07:02,857	44k	INFO	====> Epoch: 2176, cost 16.65 s
2023-12-18 11:07:19,480	44k	INFO	====> Epoch: 2177, cost 16.62 s
2023-12-18 11:07:35,828	44k	INFO	====> Epoch: 2178, cost 16.35 s
2023-12-18 11:07:52,195	44k	INFO	====> Epoch: 2179, cost 16.37 s
2023-12-18 11:08:08,564	44k	INFO	====> Epoch: 2180, cost 16.37 s
2023-12-18 11:08:24,978	44k	INFO	====> Epoch: 2181, cost 16.41 s
2023-12-18 11:08:41,531	44k	INFO	====> Epoch: 2182, cost 16.55 s
2023-12-18 11:08:57,949	44k	INFO	====> Epoch: 2183, cost 16.42 s
2023-12-18 11:09:14,229	44k	INFO	====> Epoch: 2184, cost 16.28 s
2023-12-18 11:09:30,622	44k	INFO	====> Epoch: 2185, cost 16.39 s
2023-12-18 11:09:46,427	44k	INFO	Train Epoch: 2186 [93%]
2023-12-18 11:09:46,427	44k	INFO	Losses: [1.1923282146453857, 3.825554609298706, 17.00979995727539, 22.323392868041992, 0.35360243916511536], step: 32800, lr: 7.607944312606395e-05, reference_loss: 44.70467758178711
2023-12-18 11:09:51,876	44k	INFO	Saving model and optimizer state at iteration 2186 to ./logs\44k\G_32800.pth
2023-12-18 11:09:53,032	44k	INFO	Saving model and optimizer state at iteration 2186 to ./logs\44k\D_32800.pth
2023-12-18 11:09:55,986	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_24800.pth
2023-12-18 11:09:57,124	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_24800.pth
2023-12-18 11:09:57,711	44k	INFO	====> Epoch: 2186, cost 27.09 s
2023-12-18 11:10:14,978	44k	INFO	====> Epoch: 2187, cost 17.27 s
2023-12-18 11:10:31,624	44k	INFO	====> Epoch: 2188, cost 16.65 s
2023-12-18 11:10:48,345	44k	INFO	====> Epoch: 2189, cost 16.72 s
2023-12-18 11:11:04,672	44k	INFO	====> Epoch: 2190, cost 16.33 s
2023-12-18 11:11:21,154	44k	INFO	====> Epoch: 2191, cost 16.48 s
2023-12-18 11:11:37,616	44k	INFO	====> Epoch: 2192, cost 16.46 s
2023-12-18 11:11:54,133	44k	INFO	====> Epoch: 2193, cost 16.52 s
2023-12-18 11:12:10,543	44k	INFO	====> Epoch: 2194, cost 16.41 s
2023-12-18 11:12:26,987	44k	INFO	====> Epoch: 2195, cost 16.44 s
2023-12-18 11:12:43,540	44k	INFO	====> Epoch: 2196, cost 16.55 s
2023-12-18 11:13:00,076	44k	INFO	====> Epoch: 2197, cost 16.54 s
2023-12-18 11:13:16,529	44k	INFO	====> Epoch: 2198, cost 16.45 s
2023-12-18 11:13:32,945	44k	INFO	====> Epoch: 2199, cost 16.42 s
2023-12-18 11:13:42,597	44k	INFO	Train Epoch: 2200 [27%]
2023-12-18 11:13:42,597	44k	INFO	Losses: [1.9381115436553955, 3.556706666946411, 12.643278121948242, 23.30306625366211, 0.5637285709381104], step: 33000, lr: 7.594641222198233e-05, reference_loss: 42.00489044189453
2023-12-18 11:13:49,775	44k	INFO	====> Epoch: 2200, cost 16.83 s
2023-12-18 11:14:06,354	44k	INFO	====> Epoch: 2201, cost 16.58 s
2023-12-18 11:14:22,684	44k	INFO	====> Epoch: 2202, cost 16.33 s
2023-12-18 11:14:39,085	44k	INFO	====> Epoch: 2203, cost 16.40 s
2023-12-18 11:14:55,432	44k	INFO	====> Epoch: 2204, cost 16.35 s
2023-12-18 11:15:12,010	44k	INFO	====> Epoch: 2205, cost 16.57 s
2023-12-18 11:15:28,423	44k	INFO	====> Epoch: 2206, cost 16.42 s
2023-12-18 11:15:44,846	44k	INFO	====> Epoch: 2207, cost 16.42 s
2023-12-18 11:16:01,298	44k	INFO	====> Epoch: 2208, cost 16.45 s
2023-12-18 11:16:17,941	44k	INFO	====> Epoch: 2209, cost 16.64 s
2023-12-18 11:16:34,579	44k	INFO	====> Epoch: 2210, cost 16.64 s
2023-12-18 11:16:51,167	44k	INFO	====> Epoch: 2211, cost 16.59 s
2023-12-18 11:17:07,520	44k	INFO	====> Epoch: 2212, cost 16.35 s
2023-12-18 11:17:20,415	44k	INFO	Train Epoch: 2213 [60%]
2023-12-18 11:17:20,415	44k	INFO	Losses: [2.140159845352173, 3.1955227851867676, 9.957656860351562, 17.62181854248047, 0.8006429672241211], step: 33200, lr: 7.582309181940152e-05, reference_loss: 33.71580123901367
2023-12-18 11:17:24,513	44k	INFO	====> Epoch: 2213, cost 16.99 s
2023-12-18 11:17:40,828	44k	INFO	====> Epoch: 2214, cost 16.32 s
2023-12-18 11:17:57,221	44k	INFO	====> Epoch: 2215, cost 16.39 s
2023-12-18 11:18:13,659	44k	INFO	====> Epoch: 2216, cost 16.44 s
2023-12-18 11:18:29,952	44k	INFO	====> Epoch: 2217, cost 16.29 s
2023-12-18 11:18:46,472	44k	INFO	====> Epoch: 2218, cost 16.52 s
2023-12-18 11:19:02,913	44k	INFO	====> Epoch: 2219, cost 16.44 s
2023-12-18 11:19:19,232	44k	INFO	====> Epoch: 2220, cost 16.32 s
2023-12-18 11:19:35,742	44k	INFO	====> Epoch: 2221, cost 16.51 s
2023-12-18 11:19:52,087	44k	INFO	====> Epoch: 2222, cost 16.35 s
2023-12-18 11:20:08,400	44k	INFO	====> Epoch: 2223, cost 16.31 s
2023-12-18 11:20:24,804	44k	INFO	====> Epoch: 2224, cost 16.40 s
2023-12-18 11:20:41,157	44k	INFO	====> Epoch: 2225, cost 16.35 s
2023-12-18 11:20:57,062	44k	INFO	Train Epoch: 2226 [93%]
2023-12-18 11:20:57,062	44k	INFO	Losses: [1.3854377269744873, 3.5431480407714844, 14.917083740234375, 20.00389862060547, 0.6053844094276428], step: 33400, lr: 7.569997166224704e-05, reference_loss: 40.454952239990234
2023-12-18 11:20:58,130	44k	INFO	====> Epoch: 2226, cost 16.97 s
2023-12-18 11:21:14,688	44k	INFO	====> Epoch: 2227, cost 16.56 s
2023-12-18 11:21:30,957	44k	INFO	====> Epoch: 2228, cost 16.27 s
2023-12-18 11:21:47,314	44k	INFO	====> Epoch: 2229, cost 16.36 s
2023-12-18 11:22:03,813	44k	INFO	====> Epoch: 2230, cost 16.50 s
2023-12-18 11:22:20,264	44k	INFO	====> Epoch: 2231, cost 16.45 s
2023-12-18 11:22:36,784	44k	INFO	====> Epoch: 2232, cost 16.52 s
2023-12-18 11:22:53,221	44k	INFO	====> Epoch: 2233, cost 16.44 s
2023-12-18 11:23:09,616	44k	INFO	====> Epoch: 2234, cost 16.39 s
2023-12-18 11:23:26,054	44k	INFO	====> Epoch: 2235, cost 16.44 s
2023-12-18 11:23:42,398	44k	INFO	====> Epoch: 2236, cost 16.34 s
2023-12-18 11:23:58,663	44k	INFO	====> Epoch: 2237, cost 16.26 s
2023-12-18 11:24:15,003	44k	INFO	====> Epoch: 2238, cost 16.34 s
2023-12-18 11:24:31,360	44k	INFO	====> Epoch: 2239, cost 16.36 s
2023-12-18 11:24:41,084	44k	INFO	Train Epoch: 2240 [27%]
2023-12-18 11:24:41,084	44k	INFO	Losses: [1.9895873069763184, 2.9280593395233154, 9.759982109069824, 17.165315628051758, 0.5962346792221069], step: 33600, lr: 7.55676042939358e-05, reference_loss: 32.439178466796875
2023-12-18 11:24:46,435	44k	INFO	Saving model and optimizer state at iteration 2240 to ./logs\44k\G_33600.pth
2023-12-18 11:24:47,731	44k	INFO	Saving model and optimizer state at iteration 2240 to ./logs\44k\D_33600.pth
2023-12-18 11:24:54,088	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_25600.pth
2023-12-18 11:24:54,088	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_25600.pth
2023-12-18 11:25:01,402	44k	INFO	====> Epoch: 2240, cost 30.04 s
2023-12-18 11:25:18,364	44k	INFO	====> Epoch: 2241, cost 16.96 s
2023-12-18 11:25:34,649	44k	INFO	====> Epoch: 2242, cost 16.28 s
2023-12-18 11:25:51,005	44k	INFO	====> Epoch: 2243, cost 16.36 s
2023-12-18 11:26:07,343	44k	INFO	====> Epoch: 2244, cost 16.34 s
2023-12-18 11:26:23,495	44k	INFO	====> Epoch: 2245, cost 16.15 s
2023-12-18 11:26:39,721	44k	INFO	====> Epoch: 2246, cost 16.23 s
2023-12-18 11:26:56,100	44k	INFO	====> Epoch: 2247, cost 16.38 s
2023-12-18 11:27:12,367	44k	INFO	====> Epoch: 2248, cost 16.27 s
2023-12-18 11:27:28,592	44k	INFO	====> Epoch: 2249, cost 16.22 s
2023-12-18 11:27:44,933	44k	INFO	====> Epoch: 2250, cost 16.34 s
2023-12-18 11:28:01,279	44k	INFO	====> Epoch: 2251, cost 16.35 s
2023-12-18 11:28:17,700	44k	INFO	====> Epoch: 2252, cost 16.42 s
2023-12-18 11:28:30,417	44k	INFO	Train Epoch: 2253 [60%]
2023-12-18 11:28:30,417	44k	INFO	Losses: [2.0059263706207275, 3.1904687881469727, 9.744091987609863, 19.912883758544922, 0.7433456182479858], step: 33800, lr: 7.544489899277746e-05, reference_loss: 35.596717834472656
2023-12-18 11:28:34,426	44k	INFO	====> Epoch: 2253, cost 16.73 s
2023-12-18 11:28:50,674	44k	INFO	====> Epoch: 2254, cost 16.25 s
2023-12-18 11:29:06,958	44k	INFO	====> Epoch: 2255, cost 16.28 s
2023-12-18 11:29:23,325	44k	INFO	====> Epoch: 2256, cost 16.37 s
2023-12-18 11:29:39,601	44k	INFO	====> Epoch: 2257, cost 16.28 s
2023-12-18 11:29:55,866	44k	INFO	====> Epoch: 2258, cost 16.26 s
2023-12-18 11:30:12,299	44k	INFO	====> Epoch: 2259, cost 16.43 s
2023-12-18 11:30:28,482	44k	INFO	====> Epoch: 2260, cost 16.18 s
2023-12-18 11:30:44,813	44k	INFO	====> Epoch: 2261, cost 16.33 s
2023-12-18 11:31:01,011	44k	INFO	====> Epoch: 2262, cost 16.20 s
2023-12-18 11:31:17,311	44k	INFO	====> Epoch: 2263, cost 16.30 s
2023-12-18 11:31:33,748	44k	INFO	====> Epoch: 2264, cost 16.44 s
2023-12-18 11:31:50,044	44k	INFO	====> Epoch: 2265, cost 16.30 s
2023-12-18 11:32:05,716	44k	INFO	Train Epoch: 2266 [93%]
2023-12-18 11:32:05,716	44k	INFO	Losses: [1.6762096881866455, 3.251845598220825, 16.287513732910156, 18.89430809020996, 0.3641401529312134], step: 34000, lr: 7.532239293825491e-05, reference_loss: 40.47401809692383
2023-12-18 11:32:06,790	44k	INFO	====> Epoch: 2266, cost 16.75 s
2023-12-18 11:32:23,133	44k	INFO	====> Epoch: 2267, cost 16.34 s
2023-12-18 11:32:39,426	44k	INFO	====> Epoch: 2268, cost 16.29 s
2023-12-18 11:32:56,107	44k	INFO	====> Epoch: 2269, cost 16.68 s
2023-12-18 11:33:12,481	44k	INFO	====> Epoch: 2270, cost 16.37 s
2023-12-18 11:33:29,017	44k	INFO	====> Epoch: 2271, cost 16.54 s
2023-12-18 11:33:45,439	44k	INFO	====> Epoch: 2272, cost 16.42 s
2023-12-18 11:34:01,613	44k	INFO	====> Epoch: 2273, cost 16.17 s
2023-12-18 11:34:17,764	44k	INFO	====> Epoch: 2274, cost 16.15 s
2023-12-18 11:34:33,916	44k	INFO	====> Epoch: 2275, cost 16.15 s
2023-12-18 11:34:50,117	44k	INFO	====> Epoch: 2276, cost 16.20 s
2023-12-18 11:35:06,461	44k	INFO	====> Epoch: 2277, cost 16.34 s
2023-12-18 11:35:22,667	44k	INFO	====> Epoch: 2278, cost 16.21 s
2023-12-18 11:35:38,985	44k	INFO	====> Epoch: 2279, cost 16.32 s
2023-12-18 11:35:48,553	44k	INFO	Train Epoch: 2280 [27%]
2023-12-18 11:35:48,553	44k	INFO	Losses: [2.2889020442962646, 2.7503180503845215, 8.17262077331543, 21.701416015625, 0.6173967123031616], step: 34200, lr: 7.519068579610928e-05, reference_loss: 35.53065490722656
2023-12-18 11:35:55,691	44k	INFO	====> Epoch: 2280, cost 16.71 s
2023-12-18 11:36:12,062	44k	INFO	====> Epoch: 2281, cost 16.37 s
2023-12-18 11:36:28,287	44k	INFO	====> Epoch: 2282, cost 16.23 s
2023-12-18 11:36:44,640	44k	INFO	====> Epoch: 2283, cost 16.35 s
2023-12-18 11:37:00,882	44k	INFO	====> Epoch: 2284, cost 16.24 s
2023-12-18 11:37:17,242	44k	INFO	====> Epoch: 2285, cost 16.36 s
2023-12-18 11:37:33,480	44k	INFO	====> Epoch: 2286, cost 16.24 s
2023-12-18 11:37:49,923	44k	INFO	====> Epoch: 2287, cost 16.44 s
2023-12-18 11:38:06,192	44k	INFO	====> Epoch: 2288, cost 16.27 s
2023-12-18 11:38:22,593	44k	INFO	====> Epoch: 2289, cost 16.40 s
2023-12-18 11:38:38,882	44k	INFO	====> Epoch: 2290, cost 16.29 s
2023-12-18 11:38:55,152	44k	INFO	====> Epoch: 2291, cost 16.27 s
2023-12-18 11:39:11,499	44k	INFO	====> Epoch: 2292, cost 16.35 s
2023-12-18 11:39:24,169	44k	INFO	Train Epoch: 2293 [60%]
2023-12-18 11:39:24,169	44k	INFO	Losses: [2.2270450592041016, 2.640655040740967, 8.58346939086914, 18.874897003173828, 0.5409868359565735], step: 34400, lr: 7.506859252835094e-05, reference_loss: 32.86705017089844
2023-12-18 11:39:29,567	44k	INFO	Saving model and optimizer state at iteration 2293 to ./logs\44k\G_34400.pth
2023-12-18 11:39:30,785	44k	INFO	Saving model and optimizer state at iteration 2293 to ./logs\44k\D_34400.pth
2023-12-18 11:39:33,482	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_26400.pth
2023-12-18 11:39:33,482	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_26400.pth
2023-12-18 11:39:37,643	44k	INFO	====> Epoch: 2293, cost 26.14 s
2023-12-18 11:39:55,540	44k	INFO	====> Epoch: 2294, cost 17.90 s
2023-12-18 11:40:11,958	44k	INFO	====> Epoch: 2295, cost 16.42 s
2023-12-18 11:40:28,348	44k	INFO	====> Epoch: 2296, cost 16.39 s
2023-12-18 11:40:44,598	44k	INFO	====> Epoch: 2297, cost 16.25 s
2023-12-18 11:41:01,007	44k	INFO	====> Epoch: 2298, cost 16.41 s
2023-12-18 11:41:17,450	44k	INFO	====> Epoch: 2299, cost 16.44 s
2023-12-18 11:41:33,845	44k	INFO	====> Epoch: 2300, cost 16.39 s
2023-12-18 11:41:50,221	44k	INFO	====> Epoch: 2301, cost 16.38 s
2023-12-18 11:42:06,582	44k	INFO	====> Epoch: 2302, cost 16.36 s
2023-12-18 11:42:22,890	44k	INFO	====> Epoch: 2303, cost 16.31 s
2023-12-18 11:42:39,294	44k	INFO	====> Epoch: 2304, cost 16.40 s
2023-12-18 11:42:55,612	44k	INFO	====> Epoch: 2305, cost 16.32 s
2023-12-18 11:43:11,446	44k	INFO	Train Epoch: 2306 [93%]
2023-12-18 11:43:11,446	44k	INFO	Losses: [1.8376150131225586, 2.8742828369140625, 9.239768981933594, 17.526214599609375, 0.3302317261695862], step: 34600, lr: 7.494669751341973e-05, reference_loss: 31.808115005493164
2023-12-18 11:43:12,464	44k	INFO	====> Epoch: 2306, cost 16.85 s
2023-12-18 11:43:28,791	44k	INFO	====> Epoch: 2307, cost 16.33 s
2023-12-18 11:43:45,078	44k	INFO	====> Epoch: 2308, cost 16.29 s
2023-12-18 11:44:01,633	44k	INFO	====> Epoch: 2309, cost 16.55 s
2023-12-18 11:44:18,032	44k	INFO	====> Epoch: 2310, cost 16.40 s
2023-12-18 11:44:34,381	44k	INFO	====> Epoch: 2311, cost 16.35 s
2023-12-18 11:44:50,747	44k	INFO	====> Epoch: 2312, cost 16.37 s
2023-12-18 11:45:07,067	44k	INFO	====> Epoch: 2313, cost 16.32 s
2023-12-18 11:45:23,406	44k	INFO	====> Epoch: 2314, cost 16.34 s
2023-12-18 11:45:39,842	44k	INFO	====> Epoch: 2315, cost 16.44 s
2023-12-18 11:45:56,088	44k	INFO	====> Epoch: 2316, cost 16.25 s
2023-12-18 11:46:12,432	44k	INFO	====> Epoch: 2317, cost 16.34 s
2023-12-18 11:46:28,887	44k	INFO	====> Epoch: 2318, cost 16.45 s
2023-12-18 11:46:45,428	44k	INFO	====> Epoch: 2319, cost 16.54 s
2023-12-18 11:46:55,096	44k	INFO	Train Epoch: 2320 [27%]
2023-12-18 11:46:55,106	44k	INFO	Losses: [1.8116226196289062, 3.661442995071411, 12.796745300292969, 22.56110954284668, 0.7366653084754944], step: 34800, lr: 7.481564730434262e-05, reference_loss: 41.56758117675781
2023-12-18 11:47:02,316	44k	INFO	====> Epoch: 2320, cost 16.89 s
2023-12-18 11:47:18,660	44k	INFO	====> Epoch: 2321, cost 16.34 s
2023-12-18 11:47:35,189	44k	INFO	====> Epoch: 2322, cost 16.53 s
2023-12-18 11:47:51,526	44k	INFO	====> Epoch: 2323, cost 16.34 s
2023-12-18 11:48:07,914	44k	INFO	====> Epoch: 2324, cost 16.39 s
2023-12-18 11:48:24,249	44k	INFO	====> Epoch: 2325, cost 16.33 s
2023-12-18 11:48:40,643	44k	INFO	====> Epoch: 2326, cost 16.39 s
2023-12-18 11:48:56,936	44k	INFO	====> Epoch: 2327, cost 16.29 s
2023-12-18 11:49:13,259	44k	INFO	====> Epoch: 2328, cost 16.32 s
2023-12-18 11:49:29,749	44k	INFO	====> Epoch: 2329, cost 16.49 s
2023-12-18 11:49:46,083	44k	INFO	====> Epoch: 2330, cost 16.33 s
2023-12-18 11:50:02,350	44k	INFO	====> Epoch: 2331, cost 16.27 s
2023-12-18 11:50:18,864	44k	INFO	====> Epoch: 2332, cost 16.51 s
2023-12-18 11:50:31,685	44k	INFO	Train Epoch: 2333 [60%]
2023-12-18 11:50:31,685	44k	INFO	Losses: [1.931926965713501, 3.314007520675659, 9.707188606262207, 18.11225700378418, 0.8085576295852661], step: 35000, lr: 7.469416301726467e-05, reference_loss: 33.873939514160156
2023-12-18 11:50:35,741	44k	INFO	====> Epoch: 2333, cost 16.88 s
2023-12-18 11:50:51,975	44k	INFO	====> Epoch: 2334, cost 16.23 s
2023-12-18 11:51:08,319	44k	INFO	====> Epoch: 2335, cost 16.34 s
2023-12-18 11:51:24,811	44k	INFO	====> Epoch: 2336, cost 16.49 s
2023-12-18 11:51:41,233	44k	INFO	====> Epoch: 2337, cost 16.42 s
2023-12-18 11:51:57,484	44k	INFO	====> Epoch: 2338, cost 16.25 s
2023-12-18 11:52:13,898	44k	INFO	====> Epoch: 2339, cost 16.41 s
2023-12-18 11:52:30,143	44k	INFO	====> Epoch: 2340, cost 16.24 s
2023-12-18 11:52:46,558	44k	INFO	====> Epoch: 2341, cost 16.42 s
2023-12-18 11:53:02,854	44k	INFO	====> Epoch: 2342, cost 16.30 s
2023-12-18 11:53:19,216	44k	INFO	====> Epoch: 2343, cost 16.36 s
2023-12-18 11:53:35,461	44k	INFO	====> Epoch: 2344, cost 16.24 s
2023-12-18 11:53:51,774	44k	INFO	====> Epoch: 2345, cost 16.31 s
2023-12-18 11:54:07,465	44k	INFO	Train Epoch: 2346 [93%]
2023-12-18 11:54:07,465	44k	INFO	Losses: [2.522393226623535, 2.108071804046631, 1.6755051612854004, 10.740166664123535, 0.6170383095741272], step: 35200, lr: 7.457287599416209e-05, reference_loss: 17.663175582885742
2023-12-18 11:54:12,797	44k	INFO	Saving model and optimizer state at iteration 2346 to ./logs\44k\G_35200.pth
2023-12-18 11:54:14,022	44k	INFO	Saving model and optimizer state at iteration 2346 to ./logs\44k\D_35200.pth
2023-12-18 11:54:17,625	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_27200.pth
2023-12-18 11:54:17,625	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_27200.pth
2023-12-18 11:54:18,226	44k	INFO	====> Epoch: 2346, cost 26.45 s
2023-12-18 11:54:36,902	44k	INFO	====> Epoch: 2347, cost 18.68 s
2023-12-18 11:54:53,556	44k	INFO	====> Epoch: 2348, cost 16.65 s
2023-12-18 11:55:10,024	44k	INFO	====> Epoch: 2349, cost 16.47 s
2023-12-18 11:55:26,307	44k	INFO	====> Epoch: 2350, cost 16.28 s
2023-12-18 11:55:42,506	44k	INFO	====> Epoch: 2351, cost 16.20 s
2023-12-18 11:55:58,784	44k	INFO	====> Epoch: 2352, cost 16.28 s
2023-12-18 11:56:15,108	44k	INFO	====> Epoch: 2353, cost 16.32 s
2023-12-18 11:56:31,479	44k	INFO	====> Epoch: 2354, cost 16.37 s
2023-12-18 11:56:47,997	44k	INFO	====> Epoch: 2355, cost 16.52 s
2023-12-18 11:57:04,281	44k	INFO	====> Epoch: 2356, cost 16.28 s
2023-12-18 11:57:20,520	44k	INFO	====> Epoch: 2357, cost 16.24 s
2023-12-18 11:57:36,856	44k	INFO	====> Epoch: 2358, cost 16.34 s
2023-12-18 11:57:53,299	44k	INFO	====> Epoch: 2359, cost 16.44 s
2023-12-18 11:58:03,012	44k	INFO	Train Epoch: 2360 [27%]
2023-12-18 11:58:03,022	44k	INFO	Losses: [1.839370608329773, 2.921431541442871, 9.693913459777832, 18.799938201904297, 0.44188663363456726], step: 35400, lr: 7.444247944148188e-05, reference_loss: 33.69654083251953
2023-12-18 11:58:10,220	44k	INFO	====> Epoch: 2360, cost 16.92 s
2023-12-18 11:58:26,597	44k	INFO	====> Epoch: 2361, cost 16.38 s
2023-12-18 11:58:42,693	44k	INFO	====> Epoch: 2362, cost 16.10 s
2023-12-18 11:58:58,863	44k	INFO	====> Epoch: 2363, cost 16.17 s
2023-12-18 11:59:15,068	44k	INFO	====> Epoch: 2364, cost 16.20 s
2023-12-18 11:59:31,466	44k	INFO	====> Epoch: 2365, cost 16.40 s
2023-12-18 11:59:47,963	44k	INFO	====> Epoch: 2366, cost 16.50 s
2023-12-18 12:00:04,349	44k	INFO	====> Epoch: 2367, cost 16.39 s
2023-12-18 12:00:20,849	44k	INFO	====> Epoch: 2368, cost 16.50 s
2023-12-18 12:00:37,187	44k	INFO	====> Epoch: 2369, cost 16.34 s
2023-12-18 12:00:53,374	44k	INFO	====> Epoch: 2370, cost 16.19 s
2023-12-18 12:01:09,630	44k	INFO	====> Epoch: 2371, cost 16.26 s
2023-12-18 12:01:25,998	44k	INFO	====> Epoch: 2372, cost 16.37 s
2023-12-18 12:01:38,860	44k	INFO	Train Epoch: 2373 [60%]
2023-12-18 12:01:38,860	44k	INFO	Losses: [1.7788819074630737, 2.987579822540283, 11.123029708862305, 20.930091857910156, 0.6591160297393799], step: 35600, lr: 7.432160109759116e-05, reference_loss: 37.47869873046875
2023-12-18 12:01:42,891	44k	INFO	====> Epoch: 2373, cost 16.89 s
2023-12-18 12:01:59,462	44k	INFO	====> Epoch: 2374, cost 16.57 s
2023-12-18 12:02:15,783	44k	INFO	====> Epoch: 2375, cost 16.32 s
2023-12-18 12:02:32,061	44k	INFO	====> Epoch: 2376, cost 16.28 s
2023-12-18 12:02:48,433	44k	INFO	====> Epoch: 2377, cost 16.37 s
2023-12-18 12:03:04,716	44k	INFO	====> Epoch: 2378, cost 16.28 s
2023-12-18 12:03:20,932	44k	INFO	====> Epoch: 2379, cost 16.22 s
2023-12-18 12:03:37,323	44k	INFO	====> Epoch: 2380, cost 16.39 s
2023-12-18 12:03:53,551	44k	INFO	====> Epoch: 2381, cost 16.23 s
2023-12-18 12:04:09,979	44k	INFO	====> Epoch: 2382, cost 16.43 s
2023-12-18 12:04:26,137	44k	INFO	====> Epoch: 2383, cost 16.16 s
2023-12-18 12:04:42,531	44k	INFO	====> Epoch: 2384, cost 16.39 s
2023-12-18 12:04:58,874	44k	INFO	====> Epoch: 2385, cost 16.34 s
2023-12-18 12:05:14,590	44k	INFO	Train Epoch: 2386 [93%]
2023-12-18 12:05:14,590	44k	INFO	Losses: [1.3656693696975708, 3.7841708660125732, 12.944469451904297, 19.984739303588867, 0.008771657012403011], step: 35800, lr: 7.420091903375627e-05, reference_loss: 38.08781814575195
2023-12-18 12:05:15,600	44k	INFO	====> Epoch: 2386, cost 16.73 s
2023-12-18 12:05:31,820	44k	INFO	====> Epoch: 2387, cost 16.22 s
2023-12-18 12:05:47,975	44k	INFO	====> Epoch: 2388, cost 16.15 s
2023-12-18 12:06:04,373	44k	INFO	====> Epoch: 2389, cost 16.40 s
2023-12-18 12:06:20,506	44k	INFO	====> Epoch: 2390, cost 16.13 s
2023-12-18 12:06:36,711	44k	INFO	====> Epoch: 2391, cost 16.20 s
2023-12-18 12:06:52,921	44k	INFO	====> Epoch: 2392, cost 16.21 s
2023-12-18 12:07:09,352	44k	INFO	====> Epoch: 2393, cost 16.43 s
2023-12-18 12:07:25,643	44k	INFO	====> Epoch: 2394, cost 16.29 s
2023-12-18 12:07:41,850	44k	INFO	====> Epoch: 2395, cost 16.21 s
2023-12-18 12:07:58,219	44k	INFO	====> Epoch: 2396, cost 16.37 s
2023-12-18 12:08:14,419	44k	INFO	====> Epoch: 2397, cost 16.20 s
2023-12-18 12:08:30,676	44k	INFO	====> Epoch: 2398, cost 16.26 s
2023-12-18 12:08:46,957	44k	INFO	====> Epoch: 2399, cost 16.28 s
2023-12-18 12:08:56,708	44k	INFO	Train Epoch: 2400 [27%]
2023-12-18 12:08:56,708	44k	INFO	Losses: [1.6438357830047607, 3.276431083679199, 13.68618106842041, 22.332918167114258, 0.45133426785469055], step: 36000, lr: 7.407117287714481e-05, reference_loss: 41.39070510864258
2023-12-18 12:09:02,080	44k	INFO	Saving model and optimizer state at iteration 2400 to ./logs\44k\G_36000.pth
2023-12-18 12:09:03,350	44k	INFO	Saving model and optimizer state at iteration 2400 to ./logs\44k\D_36000.pth
2023-12-18 12:09:08,927	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_28000.pth
2023-12-18 12:09:08,927	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_28000.pth
2023-12-18 12:09:16,259	44k	INFO	====> Epoch: 2400, cost 29.30 s
2023-12-18 12:09:32,704	44k	INFO	====> Epoch: 2401, cost 16.45 s
2023-12-18 12:09:49,411	44k	INFO	====> Epoch: 2402, cost 16.71 s
2023-12-18 12:10:06,062	44k	INFO	====> Epoch: 2403, cost 16.65 s
2023-12-18 12:10:22,674	44k	INFO	====> Epoch: 2404, cost 16.61 s
2023-12-18 12:10:39,017	44k	INFO	====> Epoch: 2405, cost 16.34 s
2023-12-18 12:10:55,166	44k	INFO	====> Epoch: 2406, cost 16.15 s
2023-12-18 12:11:11,424	44k	INFO	====> Epoch: 2407, cost 16.26 s
2023-12-18 12:11:28,409	44k	INFO	====> Epoch: 2408, cost 16.98 s
2023-12-18 12:11:44,779	44k	INFO	====> Epoch: 2409, cost 16.37 s
2023-12-18 12:12:01,057	44k	INFO	====> Epoch: 2410, cost 16.28 s
2023-12-18 12:12:17,187	44k	INFO	====> Epoch: 2411, cost 16.13 s
2023-12-18 12:12:33,466	44k	INFO	====> Epoch: 2412, cost 16.28 s
2023-12-18 12:12:46,244	44k	INFO	Train Epoch: 2413 [60%]
2023-12-18 12:12:46,244	44k	INFO	Losses: [1.7904788255691528, 3.2023961544036865, 12.153936386108398, 18.299484252929688, 0.5988679528236389], step: 36200, lr: 7.395089745409861e-05, reference_loss: 36.045166015625
2023-12-18 12:12:50,336	44k	INFO	====> Epoch: 2413, cost 16.87 s
2023-12-18 12:13:06,781	44k	INFO	====> Epoch: 2414, cost 16.45 s
2023-12-18 12:13:22,984	44k	INFO	====> Epoch: 2415, cost 16.20 s
2023-12-18 12:13:39,324	44k	INFO	====> Epoch: 2416, cost 16.34 s
2023-12-18 12:13:55,593	44k	INFO	====> Epoch: 2417, cost 16.27 s
2023-12-18 12:14:11,945	44k	INFO	====> Epoch: 2418, cost 16.35 s
2023-12-18 12:14:28,317	44k	INFO	====> Epoch: 2419, cost 16.37 s
2023-12-18 12:14:44,546	44k	INFO	====> Epoch: 2420, cost 16.23 s
2023-12-18 12:15:00,861	44k	INFO	====> Epoch: 2421, cost 16.32 s
2023-12-18 12:15:17,124	44k	INFO	====> Epoch: 2422, cost 16.26 s
2023-12-18 12:15:33,331	44k	INFO	====> Epoch: 2423, cost 16.21 s
2023-12-18 12:15:49,722	44k	INFO	====> Epoch: 2424, cost 16.39 s
2023-12-18 12:16:06,090	44k	INFO	====> Epoch: 2425, cost 16.37 s
2023-12-18 12:16:21,905	44k	INFO	Train Epoch: 2426 [93%]
2023-12-18 12:16:21,905	44k	INFO	Losses: [1.4369168281555176, 3.7730956077575684, 11.330588340759277, 15.298237800598145, 0.8859033584594727], step: 36400, lr: 7.383081733209632e-05, reference_loss: 32.72473907470703
2023-12-18 12:16:22,946	44k	INFO	====> Epoch: 2426, cost 16.86 s
2023-12-18 12:16:39,435	44k	INFO	====> Epoch: 2427, cost 16.49 s
2023-12-18 12:16:55,876	44k	INFO	====> Epoch: 2428, cost 16.44 s
2023-12-18 12:17:12,154	44k	INFO	====> Epoch: 2429, cost 16.28 s
2023-12-18 12:17:28,498	44k	INFO	====> Epoch: 2430, cost 16.34 s
2023-12-18 12:17:44,896	44k	INFO	====> Epoch: 2431, cost 16.40 s
2023-12-18 12:18:01,273	44k	INFO	====> Epoch: 2432, cost 16.38 s
2023-12-18 12:18:17,687	44k	INFO	====> Epoch: 2433, cost 16.41 s
2023-12-18 12:18:34,084	44k	INFO	====> Epoch: 2434, cost 16.40 s
2023-12-18 12:18:50,330	44k	INFO	====> Epoch: 2435, cost 16.25 s
2023-12-18 12:19:06,523	44k	INFO	====> Epoch: 2436, cost 16.19 s
2023-12-18 12:19:22,798	44k	INFO	====> Epoch: 2437, cost 16.27 s
2023-12-18 12:19:39,437	44k	INFO	====> Epoch: 2438, cost 16.64 s
2023-12-18 12:19:55,824	44k	INFO	====> Epoch: 2439, cost 16.39 s
2023-12-18 12:20:05,586	44k	INFO	Train Epoch: 2440 [27%]
2023-12-18 12:20:05,586	44k	INFO	Losses: [1.6771786212921143, 3.379948616027832, 12.592855453491211, 18.989704132080078, 0.4484730660915375], step: 36600, lr: 7.370171832748744e-05, reference_loss: 37.08816146850586
2023-12-18 12:20:12,740	44k	INFO	====> Epoch: 2440, cost 16.92 s
2023-12-18 12:20:29,009	44k	INFO	====> Epoch: 2441, cost 16.27 s
2023-12-18 12:20:45,209	44k	INFO	====> Epoch: 2442, cost 16.20 s
2023-12-18 12:21:01,529	44k	INFO	====> Epoch: 2443, cost 16.32 s
2023-12-18 12:21:17,896	44k	INFO	====> Epoch: 2444, cost 16.37 s
2023-12-18 12:21:34,467	44k	INFO	====> Epoch: 2445, cost 16.57 s
2023-12-18 12:21:50,911	44k	INFO	====> Epoch: 2446, cost 16.44 s
2023-12-18 12:22:07,230	44k	INFO	====> Epoch: 2447, cost 16.32 s
2023-12-18 12:22:23,543	44k	INFO	====> Epoch: 2448, cost 16.31 s
2023-12-18 12:22:39,947	44k	INFO	====> Epoch: 2449, cost 16.40 s
2023-12-18 12:22:56,215	44k	INFO	====> Epoch: 2450, cost 16.27 s
2023-12-18 12:23:12,585	44k	INFO	====> Epoch: 2451, cost 16.37 s
2023-12-18 12:23:28,771	44k	INFO	====> Epoch: 2452, cost 16.19 s
2023-12-18 12:23:41,522	44k	INFO	Train Epoch: 2453 [60%]
2023-12-18 12:23:41,522	44k	INFO	Losses: [1.895605444908142, 3.450462579727173, 11.576433181762695, 19.994056701660156, 0.29080629348754883], step: 36800, lr: 7.358204281801799e-05, reference_loss: 37.20736312866211
2023-12-18 12:23:46,832	44k	INFO	Saving model and optimizer state at iteration 2453 to ./logs\44k\G_36800.pth
2023-12-18 12:23:48,057	44k	INFO	Saving model and optimizer state at iteration 2453 to ./logs\44k\D_36800.pth
2023-12-18 12:23:51,284	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_28800.pth
2023-12-18 12:23:51,284	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_28800.pth
2023-12-18 12:23:55,368	44k	INFO	====> Epoch: 2453, cost 26.60 s
2023-12-18 12:24:12,627	44k	INFO	====> Epoch: 2454, cost 17.26 s
2023-12-18 12:24:28,982	44k	INFO	====> Epoch: 2455, cost 16.35 s
2023-12-18 12:24:45,235	44k	INFO	====> Epoch: 2456, cost 16.25 s
2023-12-18 12:25:01,607	44k	INFO	====> Epoch: 2457, cost 16.37 s
2023-12-18 12:25:17,813	44k	INFO	====> Epoch: 2458, cost 16.21 s
2023-12-18 12:25:34,101	44k	INFO	====> Epoch: 2459, cost 16.29 s
2023-12-18 12:25:50,277	44k	INFO	====> Epoch: 2460, cost 16.18 s
2023-12-18 12:26:06,486	44k	INFO	====> Epoch: 2461, cost 16.21 s
2023-12-18 12:26:22,637	44k	INFO	====> Epoch: 2462, cost 16.15 s
2023-12-18 12:26:38,848	44k	INFO	====> Epoch: 2463, cost 16.21 s
2023-12-18 12:26:55,091	44k	INFO	====> Epoch: 2464, cost 16.24 s
2023-12-18 12:27:11,310	44k	INFO	====> Epoch: 2465, cost 16.22 s
2023-12-18 12:27:27,128	44k	INFO	Train Epoch: 2466 [93%]
2023-12-18 12:27:27,128	44k	INFO	Losses: [2.594360828399658, 2.607551336288452, 10.574933052062988, 18.55804443359375, 0.47160065174102783], step: 37000, lr: 7.346256163546372e-05, reference_loss: 34.806488037109375
2023-12-18 12:27:28,218	44k	INFO	====> Epoch: 2466, cost 16.91 s
2023-12-18 12:27:44,446	44k	INFO	====> Epoch: 2467, cost 16.23 s
2023-12-18 12:28:00,608	44k	INFO	====> Epoch: 2468, cost 16.16 s
2023-12-18 12:28:16,838	44k	INFO	====> Epoch: 2469, cost 16.23 s
2023-12-18 12:28:33,190	44k	INFO	====> Epoch: 2470, cost 16.35 s
2023-12-18 12:28:49,408	44k	INFO	====> Epoch: 2471, cost 16.22 s
2023-12-18 12:29:05,623	44k	INFO	====> Epoch: 2472, cost 16.21 s
2023-12-18 12:29:21,978	44k	INFO	====> Epoch: 2473, cost 16.36 s
2023-12-18 12:29:38,224	44k	INFO	====> Epoch: 2474, cost 16.25 s
2023-12-18 12:29:54,510	44k	INFO	====> Epoch: 2475, cost 16.29 s
2023-12-18 12:30:10,618	44k	INFO	====> Epoch: 2476, cost 16.11 s
2023-12-18 12:30:27,042	44k	INFO	====> Epoch: 2477, cost 16.42 s
2023-12-18 12:30:43,297	44k	INFO	====> Epoch: 2478, cost 16.26 s
2023-12-18 12:30:59,528	44k	INFO	====> Epoch: 2479, cost 16.23 s
2023-12-18 12:31:09,054	44k	INFO	Train Epoch: 2480 [27%]
2023-12-18 12:31:09,054	44k	INFO	Losses: [1.6485702991485596, 3.6325395107269287, 12.493321418762207, 18.41002655029297, 0.653689980506897], step: 37200, lr: 7.333410655497212e-05, reference_loss: 36.8381462097168
2023-12-18 12:31:16,134	44k	INFO	====> Epoch: 2480, cost 16.61 s
2023-12-18 12:31:32,341	44k	INFO	====> Epoch: 2481, cost 16.21 s
2023-12-18 12:31:48,674	44k	INFO	====> Epoch: 2482, cost 16.33 s
2023-12-18 12:32:05,122	44k	INFO	====> Epoch: 2483, cost 16.45 s
2023-12-18 12:32:21,354	44k	INFO	====> Epoch: 2484, cost 16.23 s
2023-12-18 12:32:37,574	44k	INFO	====> Epoch: 2485, cost 16.22 s
2023-12-18 12:32:53,988	44k	INFO	====> Epoch: 2486, cost 16.41 s
2023-12-18 12:33:10,130	44k	INFO	====> Epoch: 2487, cost 16.14 s
2023-12-18 12:33:26,310	44k	INFO	====> Epoch: 2488, cost 16.18 s
2023-12-18 12:33:42,502	44k	INFO	====> Epoch: 2489, cost 16.19 s
2023-12-18 12:33:58,741	44k	INFO	====> Epoch: 2490, cost 16.24 s
2023-12-18 12:34:14,858	44k	INFO	====> Epoch: 2491, cost 16.12 s
2023-12-18 12:34:30,942	44k	INFO	====> Epoch: 2492, cost 16.08 s
2023-12-18 12:34:43,521	44k	INFO	Train Epoch: 2493 [60%]
2023-12-18 12:34:43,521	44k	INFO	Losses: [1.9523813724517822, 3.12516713142395, 10.993964195251465, 19.711170196533203, 0.5466232895851135], step: 37400, lr: 7.321502796681144e-05, reference_loss: 36.329307556152344
2023-12-18 12:34:47,567	44k	INFO	====> Epoch: 2493, cost 16.63 s
2023-12-18 12:35:03,815	44k	INFO	====> Epoch: 2494, cost 16.25 s
2023-12-18 12:35:20,079	44k	INFO	====> Epoch: 2495, cost 16.26 s
2023-12-18 12:35:36,691	44k	INFO	====> Epoch: 2496, cost 16.61 s
2023-12-18 12:35:53,063	44k	INFO	====> Epoch: 2497, cost 16.37 s
2023-12-18 12:36:09,490	44k	INFO	====> Epoch: 2498, cost 16.43 s
2023-12-18 12:36:25,653	44k	INFO	====> Epoch: 2499, cost 16.16 s
2023-12-18 12:36:41,905	44k	INFO	====> Epoch: 2500, cost 16.25 s
2023-12-18 12:36:58,067	44k	INFO	====> Epoch: 2501, cost 16.16 s
2023-12-18 12:37:14,471	44k	INFO	====> Epoch: 2502, cost 16.40 s
2023-12-18 12:37:30,688	44k	INFO	====> Epoch: 2503, cost 16.22 s
2023-12-18 12:37:47,038	44k	INFO	====> Epoch: 2504, cost 16.35 s
2023-12-18 12:38:03,328	44k	INFO	====> Epoch: 2505, cost 16.29 s
2023-12-18 12:38:18,895	44k	INFO	Train Epoch: 2506 [93%]
2023-12-18 12:38:18,895	44k	INFO	Losses: [1.4508090019226074, 3.8603355884552, 15.537680625915527, 21.403926849365234, 0.5179211497306824], step: 37600, lr: 7.309614273629596e-05, reference_loss: 42.77067565917969
2023-12-18 12:38:24,131	44k	INFO	Saving model and optimizer state at iteration 2506 to ./logs\44k\G_37600.pth
2023-12-18 12:38:25,301	44k	INFO	Saving model and optimizer state at iteration 2506 to ./logs\44k\D_37600.pth
2023-12-18 12:38:32,097	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\G_29600.pth
2023-12-18 12:38:32,097	44k	INFO	.. Free up space by deleting ckpt ./logs\44k\D_29600.pth
2023-12-18 12:38:32,697	44k	INFO	====> Epoch: 2506, cost 29.37 s
2023-12-18 12:38:50,187	44k	INFO	====> Epoch: 2507, cost 17.49 s
2023-12-18 12:39:06,334	44k	INFO	====> Epoch: 2508, cost 16.15 s
2023-12-18 12:39:22,498	44k	INFO	====> Epoch: 2509, cost 16.16 s
2023-12-18 12:39:38,786	44k	INFO	====> Epoch: 2510, cost 16.29 s
2023-12-18 12:39:54,962	44k	INFO	====> Epoch: 2511, cost 16.18 s
2023-12-18 12:40:11,575	44k	INFO	====> Epoch: 2512, cost 16.61 s
2023-12-18 12:40:27,896	44k	INFO	====> Epoch: 2513, cost 16.32 s
2023-12-18 12:40:44,325	44k	INFO	====> Epoch: 2514, cost 16.43 s
2023-12-18 12:41:00,600	44k	INFO	====> Epoch: 2515, cost 16.27 s
2023-12-18 12:41:16,760	44k	INFO	====> Epoch: 2516, cost 16.16 s
2023-12-18 12:41:33,158	44k	INFO	====> Epoch: 2517, cost 16.40 s
2023-12-18 12:41:49,378	44k	INFO	====> Epoch: 2518, cost 16.22 s
2023-12-18 12:42:05,775	44k	INFO	====> Epoch: 2519, cost 16.40 s
2023-12-18 12:42:15,381	44k	INFO	Train Epoch: 2520 [27%]
2023-12-18 12:42:15,381	44k	INFO	Losses: [1.7540324926376343, 3.3329250812530518, 13.909547805786133, 21.25723648071289, 0.3658987879753113], step: 37800, lr: 7.296832836813642e-05, reference_loss: 40.6196403503418
2023-12-18 12:42:22,544	44k	INFO	====> Epoch: 2520, cost 16.77 s
2023-12-18 12:42:38,682	44k	INFO	====> Epoch: 2521, cost 16.14 s
2023-12-18 12:42:54,852	44k	INFO	====> Epoch: 2522, cost 16.17 s
2023-12-18 12:43:11,127	44k	INFO	====> Epoch: 2523, cost 16.27 s
2023-12-18 12:43:27,511	44k	INFO	====> Epoch: 2524, cost 16.38 s
2023-12-18 12:43:43,703	44k	INFO	====> Epoch: 2525, cost 16.19 s
2023-12-18 12:43:59,961	44k	INFO	====> Epoch: 2526, cost 16.26 s
2023-12-18 12:44:16,398	44k	INFO	====> Epoch: 2527, cost 16.44 s
2023-12-18 12:44:32,551	44k	INFO	====> Epoch: 2528, cost 16.15 s
2023-12-18 12:44:48,877	44k	INFO	====> Epoch: 2529, cost 16.33 s
2023-12-18 12:45:05,082	44k	INFO	====> Epoch: 2530, cost 16.21 s
2023-12-18 12:45:21,328	44k	INFO	====> Epoch: 2531, cost 16.25 s
2023-12-18 12:45:37,525	44k	INFO	====> Epoch: 2532, cost 16.20 s
2023-12-18 12:45:50,447	44k	INFO	Train Epoch: 2533 [60%]
2023-12-18 12:45:50,447	44k	INFO	Losses: [1.615832805633545, 3.475477457046509, 12.555639266967773, 20.304550170898438, 0.32248374819755554], step: 38000, lr: 7.284984372394143e-05, reference_loss: 38.273983001708984
2023-12-18 12:45:54,482	44k	INFO	====> Epoch: 2533, cost 16.96 s
2023-12-18 12:46:10,838	44k	INFO	====> Epoch: 2534, cost 16.36 s
2023-12-18 12:46:27,091	44k	INFO	====> Epoch: 2535, cost 16.25 s
2023-12-18 12:46:43,827	44k	INFO	====> Epoch: 2536, cost 16.74 s
2023-12-18 12:47:00,121	44k	INFO	====> Epoch: 2537, cost 16.29 s
2023-12-18 12:47:16,351	44k	INFO	====> Epoch: 2538, cost 16.23 s
2023-12-18 12:47:32,592	44k	INFO	====> Epoch: 2539, cost 16.24 s
2023-12-18 12:47:48,887	44k	INFO	====> Epoch: 2540, cost 16.30 s
2023-12-18 12:48:05,131	44k	INFO	====> Epoch: 2541, cost 16.24 s
2023-12-18 12:48:21,327	44k	INFO	====> Epoch: 2542, cost 16.20 s
2023-12-18 12:48:37,610	44k	INFO	====> Epoch: 2543, cost 16.28 s
2023-12-18 12:48:53,884	44k	INFO	====> Epoch: 2544, cost 16.27 s
2023-12-18 12:49:10,367	44k	INFO	====> Epoch: 2545, cost 16.48 s
2023-12-18 12:49:26,031	44k	INFO	Train Epoch: 2546 [93%]
2023-12-18 12:49:26,041	44k	INFO	Losses: [1.3140060901641846, 3.946552276611328, 11.630853652954102, 17.980533599853516, 0.9035536646842957], step: 38200, lr: 7.273155147295627e-05, reference_loss: 35.77549743652344
2023-12-18 12:49:27,137	44k	INFO	====> Epoch: 2546, cost 16.77 s
2023-12-18 12:49:43,398	44k	INFO	====> Epoch: 2547, cost 16.26 s
2023-12-18 12:49:59,728	44k	INFO	====> Epoch: 2548, cost 16.33 s
2023-12-18 12:50:15,991	44k	INFO	====> Epoch: 2549, cost 16.26 s
2023-12-18 12:50:32,231	44k	INFO	====> Epoch: 2550, cost 16.24 s
2023-12-18 12:50:48,649	44k	INFO	====> Epoch: 2551, cost 16.42 s
2023-12-18 12:51:04,875	44k	INFO	====> Epoch: 2552, cost 16.23 s
2023-12-18 12:51:21,114	44k	INFO	====> Epoch: 2553, cost 16.24 s
2023-12-18 12:51:37,482	44k	INFO	====> Epoch: 2554, cost 16.37 s
2023-12-18 12:51:53,859	44k	INFO	====> Epoch: 2555, cost 16.38 s
2023-12-18 12:52:10,174	44k	INFO	====> Epoch: 2556, cost 16.32 s
2023-12-18 12:52:26,552	44k	INFO	====> Epoch: 2557, cost 16.38 s
2023-12-18 12:52:42,954	44k	INFO	====> Epoch: 2558, cost 16.40 s
2023-12-18 12:52:59,128	44k	INFO	====> Epoch: 2559, cost 16.17 s
2023-12-18 12:53:08,805	44k	INFO	Train Epoch: 2560 [27%]
2023-12-18 12:53:08,805	44k	INFO	Losses: [1.6487252712249756, 3.7455790042877197, 12.684045791625977, 21.380022048950195, 0.347027450799942], step: 38400, lr: 7.260437462136348e-05, reference_loss: 39.80540084838867
2023-12-18 12:53:14,033	44k	INFO	Saving model and optimizer state at iteration 2560 to ./logs\44k\G_38400.pth
2023-12-18 12:53:15,253	44k	INFO	Saving model and optimizer state at iteration 2560 to ./logs\44k\D_38400.pth