so-vits-svc / cluster /kmeans.py
aoxiang1221's picture
update
85ce65e
from time import time
import numpy as np
import pynvml
import torch
from torch.nn.functional import normalize
# device=torch.device("cuda:0")
def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
""" Picks k points in the data based on the kmeans++ method.
Parameters
----------
data : torch.Tensor
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
data, rank 2 multidimensional data, in which case one
row is one observation.
k : int
Number of samples to generate.
sample_size : int
sample data to avoid memory overflow during calculation
Returns
-------
init : ndarray
A 'k' by 'N' containing the initial centroids.
References
----------
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.
.. [2] scipy/cluster/vq.py: _kpp
"""
batch_size=data.shape[0]
if batch_size>sample_size:
data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
dims = data.shape[1] if len(data.shape) > 1 else 1
init = torch.zeros((k, dims)).to(data.device)
r = torch.distributions.uniform.Uniform(0, 1)
for i in range(k):
if i == 0:
init[i, :] = data[torch.randint(data.shape[0], [1])]
else:
D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
probs = D2 / torch.sum(D2)
cumprobs = torch.cumsum(probs, dim=0)
init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
return init
class KMeansGPU:
'''
Kmeans clustering algorithm implemented with PyTorch
Parameters:
n_clusters: int,
Number of clusters
max_iter: int, default: 100
Maximum number of iterations
tol: float, default: 0.0001
Tolerance
verbose: int, default: 0
Verbosity
mode: {'euclidean', 'cosine'}, default: 'euclidean'
Type of distance measure
init_method: {'random', 'point', '++'}
Type of initialization
minibatch: {None, int}, default: None
Batch size of MinibatchKmeans algorithm
if None perform full KMeans algorithm
Attributes:
centroids: torch.Tensor, shape: [n_clusters, n_features]
cluster centroids
'''
def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.tol = tol
self.verbose = verbose
self.mode = mode
self.device=device
pynvml.nvmlInit()
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
@staticmethod
def cos_sim(a, b):
"""
Compute cosine similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
@staticmethod
def euc_sim(a, b):
"""
Compute euclidean similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
def max_sim(self, a, b):
"""
Compute maximum similarity (or minimum distance) of each vector
in a with all of the vectors in b
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
if self.mode == 'cosine':
sim_func = self.cos_sim
elif self.mode == 'euclidean':
sim_func = self.euc_sim
sim = sim_func(a, b)
max_sim_v, max_sim_i = sim.max(dim=-1)
return max_sim_v, max_sim_i
def fit_predict(self, X):
"""
Combination of fit() and predict() methods.
This is faster than calling fit() and predict() seperately.
Parameters:
X: torch.Tensor, shape: [n_samples, n_features]
centroids: {torch.Tensor, None}, default: None
if given, centroids will be initialized with given tensor
if None, centroids will be randomly chosen from X
Return:
labels: torch.Tensor, shape: [n_samples]
mini_=33kk/k*remain
mini=min(mini_,fea_shape)
offset=log2(k/1000)*1.5
kpp_all=min(mini_*10/offset,fea_shape)
kpp_sample=min(mini_/12/offset,fea_shape)
"""
assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
# print("verbose:%s"%self.verbose)
offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
with torch.no_grad():
batch_size= X.shape[0]
# print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
start_time = time()
if (self.minibatch*10//offset< batch_size):
x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
else:
x = X.to(self.device)
# print(x.device)
self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
del x
torch.cuda.empty_cache()
# self.centroids = self.centroids.to(self.device)
num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
closest = None#[3098036]#int64
if(self.minibatch>=batch_size//2 and self.minibatch<batch_size):
X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device)
elif(self.minibatch>=batch_size):
X=X.to(self.device)
for i in range(self.max_iter):
iter_time = time()
if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存
x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device)
else:#否则直接全部缓存
x = X
closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999
matched_clusters, counts = closest.unique(return_counts=True)#int64#1k
expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999
mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000
c_grad = mask @ x / mask.sum(-1)[..., :, None]
c_grad[c_grad!=c_grad] = 0 # remove NaNs
error = (c_grad - self.centroids).pow(2).sum()
if self.minibatch is not None:
lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1
else:
lr = 1
matched_clusters=matched_clusters.long()
num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors
self.centroids = self.centroids * (1-lr) + c_grad * lr
if self.verbose >= 2:
print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
if error <= self.tol:
break
if self.verbose >= 1:
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
return closest