import gradio as gr import requests from PIL import Image from io import BytesIO import os # Load API Token from environment variable API_TOKEN = os.getenv("HF_API_TOKEN") # Ensure you've set this environment variable # Hugging Face Inference API URL API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored" # Function to call Hugging Face API and get the generated image def generate_image(prompt, progress=gr.Progress()): headers = {"Authorization": f"Bearer {API_TOKEN}"} data = {"inputs": prompt} # Initialize progress progress(0, desc="Starting image generation...") response = requests.post(API_URL, headers=headers, json=data) if response.status_code == 200: progress(50, desc="Processing image...") image_bytes = BytesIO(response.content) image = Image.open(image_bytes) progress(100, desc="Completed") return image else: progress(100, desc="Error occurred") return f"Error: {response.status_code}, {response.text}" # Create Gradio interface def create_ui(): with gr.Blocks(theme="hev832/Applio") as ui: gr.Markdown("## Flux Uncensored\nUnofficial Gradio Demo") prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe the image you want to generate", lines=3) generate_button = gr.Button("Generate Image") with gr.Row(): output_image = gr.Image(label="Generated Image") # Link the button to the function with progress generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image, show_progress=True) return ui # Run the interface if __name__ == "__main__": create_ui().launch()