Update app.py
Browse files
app.py
CHANGED
@@ -3,42 +3,57 @@ from diffusers import StableDiffusionPipeline
|
|
3 |
import torch
|
4 |
|
5 |
# Function to automatically switch between GPU and CPU
|
6 |
-
def load_model(
|
7 |
if torch.cuda.is_available():
|
8 |
device = "cuda"
|
9 |
info = "Running on GPU (CUDA)"
|
10 |
else:
|
11 |
device = "cpu"
|
12 |
info = "Running on CPU"
|
13 |
-
|
14 |
-
# Load the model dynamically on the correct device
|
15 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
16 |
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
return pipe, info
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Function for text-to-image generation with dynamic model ID and device info
|
21 |
-
def generate_image(
|
22 |
-
pipe, info = load_model(
|
23 |
image = pipe(prompt).images[0]
|
24 |
return image, info
|
25 |
|
26 |
# Create the Gradio interface
|
27 |
with gr.Blocks() as demo:
|
28 |
-
gr.Markdown("## Custom Text-to-Image Generator")
|
29 |
-
|
30 |
with gr.Row():
|
31 |
with gr.Column():
|
32 |
-
|
|
|
33 |
prompt = gr.Textbox(label="Enter your prompt", placeholder="Describe the image you want to generate")
|
34 |
generate_btn = gr.Button("Generate Image")
|
35 |
|
36 |
with gr.Column():
|
37 |
output_image = gr.Image(label="Generated Image")
|
38 |
-
device_info = gr.Markdown() # To display if GPU or CPU is used
|
39 |
|
40 |
# Link the button to the image generation function
|
41 |
-
generate_btn.click(fn=generate_image, inputs=[
|
42 |
|
43 |
# Launch the app
|
44 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
|
5 |
# Function to automatically switch between GPU and CPU
|
6 |
+
def load_model(base_model_id, adapter_model_id=None):
|
7 |
if torch.cuda.is_available():
|
8 |
device = "cuda"
|
9 |
info = "Running on GPU (CUDA)"
|
10 |
else:
|
11 |
device = "cpu"
|
12 |
info = "Running on CPU"
|
13 |
+
|
14 |
+
# Load the base model dynamically on the correct device
|
15 |
+
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
16 |
pipe = pipe.to(device)
|
17 |
+
|
18 |
+
# If an adapter model is provided, load and merge the adapter model
|
19 |
+
if adapter_model_id:
|
20 |
+
adapter_model = StableDiffusionPipeline.from_pretrained(adapter_model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
21 |
+
pipe.unet.load_attn_procs(adapter_model_id) # This applies the adapter like LoRA to the model's UNet
|
22 |
+
info += f" with Adapter Model: {adapter_model_id}"
|
23 |
|
24 |
return pipe, info
|
25 |
|
26 |
+
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
device = "cuda"
|
29 |
+
info = "Running on GPU (CUDA) 🔥"
|
30 |
+
else:
|
31 |
+
device = "cpu"
|
32 |
+
info = "Running on CPU 🥶"
|
33 |
+
|
34 |
# Function for text-to-image generation with dynamic model ID and device info
|
35 |
+
def generate_image(base_model_id, adapter_model_id, prompt):
|
36 |
+
pipe, info = load_model(base_model_id, adapter_model_id)
|
37 |
image = pipe(prompt).images[0]
|
38 |
return image, info
|
39 |
|
40 |
# Create the Gradio interface
|
41 |
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("## Custom Text-to-Image Generator with Adapter Support")
|
43 |
+
gr.Markdown(f"{info}")
|
44 |
with gr.Row():
|
45 |
with gr.Column():
|
46 |
+
base_model_id = gr.Textbox(label="Enter Base Model ID (e.g., CompVis/stable-diffusion-v1-4)", placeholder="Base Model ID")
|
47 |
+
adapter_model_id = gr.Textbox(label="Enter Adapter Model ID (optional, e.g., nevreal/vMurderDrones-Lora)", placeholder="Adapter Model ID (optional)", value="")
|
48 |
prompt = gr.Textbox(label="Enter your prompt", placeholder="Describe the image you want to generate")
|
49 |
generate_btn = gr.Button("Generate Image")
|
50 |
|
51 |
with gr.Column():
|
52 |
output_image = gr.Image(label="Generated Image")
|
53 |
+
device_info = gr.Markdown() # To display if GPU or CPU is used and whether an adapter is applied
|
54 |
|
55 |
# Link the button to the image generation function
|
56 |
+
generate_btn.click(fn=generate_image, inputs=[base_model_id, adapter_model_id, prompt], outputs=[output_image, device_info])
|
57 |
|
58 |
# Launch the app
|
59 |
demo.launch()
|