Spaces:
Sleeping
Sleeping
File size: 11,945 Bytes
133d4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
from pathlib import Path
import hashlib
import re
from datetime import timedelta
from typing import Optional, Callable
import uuid
import time
from utils.task import prompt_template
def get_last_user_message_item(messages: list[dict]) -> Optional[dict]:
for message in reversed(messages):
if message["role"] == "user":
return message
return None
def get_content_from_message(message: dict) -> Optional[str]:
if isinstance(message["content"], list):
for item in message["content"]:
if item["type"] == "text":
return item["text"]
else:
return message["content"]
return None
def get_last_user_message(messages: list[dict]) -> Optional[str]:
message = get_last_user_message_item(messages)
if message is None:
return None
return get_content_from_message(message)
def get_last_assistant_message(messages: list[dict]) -> Optional[str]:
for message in reversed(messages):
if message["role"] == "assistant":
return get_content_from_message(message)
return None
def get_system_message(messages: list[dict]) -> Optional[dict]:
for message in messages:
if message["role"] == "system":
return message
return None
def remove_system_message(messages: list[dict]) -> list[dict]:
return [message for message in messages if message["role"] != "system"]
def pop_system_message(messages: list[dict]) -> tuple[Optional[dict], list[dict]]:
return get_system_message(messages), remove_system_message(messages)
def prepend_to_first_user_message_content(
content: str, messages: list[dict]
) -> list[dict]:
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], list):
for item in message["content"]:
if item["type"] == "text":
item["text"] = f"{content}\n{item['text']}"
else:
message["content"] = f"{content}\n{message['content']}"
break
return messages
def add_or_update_system_message(content: str, messages: list[dict]):
"""
Adds a new system message at the beginning of the messages list
or updates the existing system message at the beginning.
:param msg: The message to be added or appended.
:param messages: The list of message dictionaries.
:return: The updated list of message dictionaries.
"""
if messages and messages[0].get("role") == "system":
messages[0]["content"] += f"{content}\n{messages[0]['content']}"
else:
# Insert at the beginning
messages.insert(0, {"role": "system", "content": content})
return messages
def openai_chat_message_template(model: str):
return {
"id": f"{model}-{str(uuid.uuid4())}",
"created": int(time.time()),
"model": model,
"choices": [{"index": 0, "logprobs": None, "finish_reason": None}],
}
def openai_chat_chunk_message_template(model: str, message: str) -> dict:
template = openai_chat_message_template(model)
template["object"] = "chat.completion.chunk"
template["choices"][0]["delta"] = {"content": message}
return template
def openai_chat_completion_message_template(model: str, message: str) -> dict:
template = openai_chat_message_template(model)
template["object"] = "chat.completion"
template["choices"][0]["message"] = {"content": message, "role": "assistant"}
template["choices"][0]["finish_reason"] = "stop"
return template
# inplace function: form_data is modified
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
system = params.get("system", None)
if not system:
return form_data
if user:
template_params = {
"user_name": user.name,
"user_location": user.info.get("location") if user.info else None,
}
else:
template_params = {}
system = prompt_template(system, **template_params)
form_data["messages"] = add_or_update_system_message(
system, form_data.get("messages", [])
)
return form_data
# inplace function: form_data is modified
def apply_model_params_to_body(
params: dict, form_data: dict, mappings: dict[str, Callable]
) -> dict:
if not params:
return form_data
for key, cast_func in mappings.items():
if (value := params.get(key)) is not None:
form_data[key] = cast_func(value)
return form_data
# inplace function: form_data is modified
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
mappings = {
"temperature": float,
"top_p": int,
"max_tokens": int,
"frequency_penalty": int,
"seed": lambda x: x,
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
}
return apply_model_params_to_body(params, form_data, mappings)
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
opts = [
"temperature",
"top_p",
"seed",
"mirostat",
"mirostat_eta",
"mirostat_tau",
"num_ctx",
"num_batch",
"num_keep",
"repeat_last_n",
"tfs_z",
"top_k",
"min_p",
"use_mmap",
"use_mlock",
"num_thread",
"num_gpu",
]
mappings = {i: lambda x: x for i in opts}
form_data = apply_model_params_to_body(params, form_data, mappings)
name_differences = {
"max_tokens": "num_predict",
"frequency_penalty": "repeat_penalty",
}
for key, value in name_differences.items():
if (param := params.get(key, None)) is not None:
form_data[value] = param
return form_data
def get_gravatar_url(email):
# Trim leading and trailing whitespace from
# an email address and force all characters
# to lower case
address = str(email).strip().lower()
# Create a SHA256 hash of the final string
hash_object = hashlib.sha256(address.encode())
hash_hex = hash_object.hexdigest()
# Grab the actual image URL
return f"https://www.gravatar.com/avatar/{hash_hex}?d=mp"
def calculate_sha256(file):
sha256 = hashlib.sha256()
# Read the file in chunks to efficiently handle large files
for chunk in iter(lambda: file.read(8192), b""):
sha256.update(chunk)
return sha256.hexdigest()
def calculate_sha256_string(string):
# Create a new SHA-256 hash object
sha256_hash = hashlib.sha256()
# Update the hash object with the bytes of the input string
sha256_hash.update(string.encode("utf-8"))
# Get the hexadecimal representation of the hash
hashed_string = sha256_hash.hexdigest()
return hashed_string
def validate_email_format(email: str) -> bool:
if email.endswith("@localhost"):
return True
return bool(re.match(r"[^@]+@[^@]+\.[^@]+", email))
def sanitize_filename(file_name):
# Convert to lowercase
lower_case_file_name = file_name.lower()
# Remove special characters using regular expression
sanitized_file_name = re.sub(r"[^\w\s]", "", lower_case_file_name)
# Replace spaces with dashes
final_file_name = re.sub(r"\s+", "-", sanitized_file_name)
return final_file_name
def extract_folders_after_data_docs(path):
# Convert the path to a Path object if it's not already
path = Path(path)
# Extract parts of the path
parts = path.parts
# Find the index of '/data/docs' in the path
try:
index_data_docs = parts.index("data") + 1
index_docs = parts.index("docs", index_data_docs) + 1
except ValueError:
return []
# Exclude the filename and accumulate folder names
tags = []
folders = parts[index_docs:-1]
for idx, _ in enumerate(folders):
tags.append("/".join(folders[: idx + 1]))
return tags
def parse_duration(duration: str) -> Optional[timedelta]:
if duration == "-1" or duration == "0":
return None
# Regular expression to find number and unit pairs
pattern = r"(-?\d+(\.\d+)?)(ms|s|m|h|d|w)"
matches = re.findall(pattern, duration)
if not matches:
raise ValueError("Invalid duration string")
total_duration = timedelta()
for number, _, unit in matches:
number = float(number)
if unit == "ms":
total_duration += timedelta(milliseconds=number)
elif unit == "s":
total_duration += timedelta(seconds=number)
elif unit == "m":
total_duration += timedelta(minutes=number)
elif unit == "h":
total_duration += timedelta(hours=number)
elif unit == "d":
total_duration += timedelta(days=number)
elif unit == "w":
total_duration += timedelta(weeks=number)
return total_duration
def parse_ollama_modelfile(model_text):
parameters_meta = {
"mirostat": int,
"mirostat_eta": float,
"mirostat_tau": float,
"num_ctx": int,
"repeat_last_n": int,
"repeat_penalty": float,
"temperature": float,
"seed": int,
"tfs_z": float,
"num_predict": int,
"top_k": int,
"top_p": float,
"num_keep": int,
"typical_p": float,
"presence_penalty": float,
"frequency_penalty": float,
"penalize_newline": bool,
"numa": bool,
"num_batch": int,
"num_gpu": int,
"main_gpu": int,
"low_vram": bool,
"f16_kv": bool,
"vocab_only": bool,
"use_mmap": bool,
"use_mlock": bool,
"num_thread": int,
}
data = {"base_model_id": None, "params": {}}
# Parse base model
base_model_match = re.search(
r"^FROM\s+(\w+)", model_text, re.MULTILINE | re.IGNORECASE
)
if base_model_match:
data["base_model_id"] = base_model_match.group(1)
# Parse template
template_match = re.search(
r'TEMPLATE\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE
)
if template_match:
data["params"] = {"template": template_match.group(1).strip()}
# Parse stops
stops = re.findall(r'PARAMETER stop "(.*?)"', model_text, re.IGNORECASE)
if stops:
data["params"]["stop"] = stops
# Parse other parameters from the provided list
for param, param_type in parameters_meta.items():
param_match = re.search(rf"PARAMETER {param} (.+)", model_text, re.IGNORECASE)
if param_match:
value = param_match.group(1)
try:
if param_type is int:
value = int(value)
elif param_type is float:
value = float(value)
elif param_type is bool:
value = value.lower() == "true"
except Exception as e:
print(e)
continue
data["params"][param] = value
# Parse adapter
adapter_match = re.search(r"ADAPTER (.+)", model_text, re.IGNORECASE)
if adapter_match:
data["params"]["adapter"] = adapter_match.group(1)
# Parse system description
system_desc_match = re.search(
r'SYSTEM\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE
)
system_desc_match_single = re.search(
r"SYSTEM\s+([^\n]+)", model_text, re.IGNORECASE
)
if system_desc_match:
data["params"]["system"] = system_desc_match.group(1).strip()
elif system_desc_match_single:
data["params"]["system"] = system_desc_match_single.group(1).strip()
# Parse messages
messages = []
message_matches = re.findall(r"MESSAGE (\w+) (.+)", model_text, re.IGNORECASE)
for role, content in message_matches:
messages.append({"role": role, "content": content})
if messages:
data["params"]["messages"] = messages
return data
|