Spaces:
Sleeping
Sleeping
import asyncio | |
import websocket # NOTE: websocket-client (https://github.com/websocket-client/websocket-client) | |
import json | |
import urllib.request | |
import urllib.parse | |
import random | |
import logging | |
from config import SRC_LOG_LEVELS | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["COMFYUI"]) | |
from pydantic import BaseModel | |
from typing import Optional | |
COMFYUI_DEFAULT_PROMPT = """ | |
{ | |
"3": { | |
"inputs": { | |
"seed": 0, | |
"steps": 20, | |
"cfg": 8, | |
"sampler_name": "euler", | |
"scheduler": "normal", | |
"denoise": 1, | |
"model": [ | |
"4", | |
0 | |
], | |
"positive": [ | |
"6", | |
0 | |
], | |
"negative": [ | |
"7", | |
0 | |
], | |
"latent_image": [ | |
"5", | |
0 | |
] | |
}, | |
"class_type": "KSampler", | |
"_meta": { | |
"title": "KSampler" | |
} | |
}, | |
"4": { | |
"inputs": { | |
"ckpt_name": "model.safetensors" | |
}, | |
"class_type": "CheckpointLoaderSimple", | |
"_meta": { | |
"title": "Load Checkpoint" | |
} | |
}, | |
"5": { | |
"inputs": { | |
"width": 512, | |
"height": 512, | |
"batch_size": 1 | |
}, | |
"class_type": "EmptyLatentImage", | |
"_meta": { | |
"title": "Empty Latent Image" | |
} | |
}, | |
"6": { | |
"inputs": { | |
"text": "Prompt", | |
"clip": [ | |
"4", | |
1 | |
] | |
}, | |
"class_type": "CLIPTextEncode", | |
"_meta": { | |
"title": "CLIP Text Encode (Prompt)" | |
} | |
}, | |
"7": { | |
"inputs": { | |
"text": "Negative Prompt", | |
"clip": [ | |
"4", | |
1 | |
] | |
}, | |
"class_type": "CLIPTextEncode", | |
"_meta": { | |
"title": "CLIP Text Encode (Prompt)" | |
} | |
}, | |
"8": { | |
"inputs": { | |
"samples": [ | |
"3", | |
0 | |
], | |
"vae": [ | |
"4", | |
2 | |
] | |
}, | |
"class_type": "VAEDecode", | |
"_meta": { | |
"title": "VAE Decode" | |
} | |
}, | |
"9": { | |
"inputs": { | |
"filename_prefix": "ComfyUI", | |
"images": [ | |
"8", | |
0 | |
] | |
}, | |
"class_type": "SaveImage", | |
"_meta": { | |
"title": "Save Image" | |
} | |
} | |
} | |
""" | |
FLUX_DEFAULT_PROMPT = """ | |
{ | |
"5": { | |
"inputs": { | |
"width": 1024, | |
"height": 1024, | |
"batch_size": 1 | |
}, | |
"class_type": "EmptyLatentImage" | |
}, | |
"6": { | |
"inputs": { | |
"text": "Input Text Here", | |
"clip": [ | |
"11", | |
0 | |
] | |
}, | |
"class_type": "CLIPTextEncode" | |
}, | |
"8": { | |
"inputs": { | |
"samples": [ | |
"13", | |
0 | |
], | |
"vae": [ | |
"10", | |
0 | |
] | |
}, | |
"class_type": "VAEDecode" | |
}, | |
"9": { | |
"inputs": { | |
"filename_prefix": "ComfyUI", | |
"images": [ | |
"8", | |
0 | |
] | |
}, | |
"class_type": "SaveImage" | |
}, | |
"10": { | |
"inputs": { | |
"vae_name": "ae.safetensors" | |
}, | |
"class_type": "VAELoader" | |
}, | |
"11": { | |
"inputs": { | |
"clip_name1": "clip_l.safetensors", | |
"clip_name2": "t5xxl_fp16.safetensors", | |
"type": "flux" | |
}, | |
"class_type": "DualCLIPLoader" | |
}, | |
"12": { | |
"inputs": { | |
"unet_name": "flux1-dev.safetensors", | |
"weight_dtype": "default" | |
}, | |
"class_type": "UNETLoader" | |
}, | |
"13": { | |
"inputs": { | |
"noise": [ | |
"25", | |
0 | |
], | |
"guider": [ | |
"22", | |
0 | |
], | |
"sampler": [ | |
"16", | |
0 | |
], | |
"sigmas": [ | |
"17", | |
0 | |
], | |
"latent_image": [ | |
"5", | |
0 | |
] | |
}, | |
"class_type": "SamplerCustomAdvanced" | |
}, | |
"16": { | |
"inputs": { | |
"sampler_name": "euler" | |
}, | |
"class_type": "KSamplerSelect" | |
}, | |
"17": { | |
"inputs": { | |
"scheduler": "simple", | |
"steps": 20, | |
"denoise": 1, | |
"model": [ | |
"12", | |
0 | |
] | |
}, | |
"class_type": "BasicScheduler" | |
}, | |
"22": { | |
"inputs": { | |
"model": [ | |
"12", | |
0 | |
], | |
"conditioning": [ | |
"6", | |
0 | |
] | |
}, | |
"class_type": "BasicGuider" | |
}, | |
"25": { | |
"inputs": { | |
"noise_seed": 778937779713005 | |
}, | |
"class_type": "RandomNoise" | |
} | |
} | |
""" | |
def queue_prompt(prompt, client_id, base_url): | |
log.info("queue_prompt") | |
p = {"prompt": prompt, "client_id": client_id} | |
data = json.dumps(p).encode("utf-8") | |
req = urllib.request.Request(f"{base_url}/prompt", data=data) | |
return json.loads(urllib.request.urlopen(req).read()) | |
def get_image(filename, subfolder, folder_type, base_url): | |
log.info("get_image") | |
data = {"filename": filename, "subfolder": subfolder, "type": folder_type} | |
url_values = urllib.parse.urlencode(data) | |
with urllib.request.urlopen(f"{base_url}/view?{url_values}") as response: | |
return response.read() | |
def get_image_url(filename, subfolder, folder_type, base_url): | |
log.info("get_image") | |
data = {"filename": filename, "subfolder": subfolder, "type": folder_type} | |
url_values = urllib.parse.urlencode(data) | |
return f"{base_url}/view?{url_values}" | |
def get_history(prompt_id, base_url): | |
log.info("get_history") | |
with urllib.request.urlopen(f"{base_url}/history/{prompt_id}") as response: | |
return json.loads(response.read()) | |
def get_images(ws, prompt, client_id, base_url): | |
prompt_id = queue_prompt(prompt, client_id, base_url)["prompt_id"] | |
output_images = [] | |
while True: | |
out = ws.recv() | |
if isinstance(out, str): | |
message = json.loads(out) | |
if message["type"] == "executing": | |
data = message["data"] | |
if data["node"] is None and data["prompt_id"] == prompt_id: | |
break # Execution is done | |
else: | |
continue # previews are binary data | |
history = get_history(prompt_id, base_url)[prompt_id] | |
for o in history["outputs"]: | |
for node_id in history["outputs"]: | |
node_output = history["outputs"][node_id] | |
if "images" in node_output: | |
for image in node_output["images"]: | |
url = get_image_url( | |
image["filename"], image["subfolder"], image["type"], base_url | |
) | |
output_images.append({"url": url}) | |
return {"data": output_images} | |
class ImageGenerationPayload(BaseModel): | |
prompt: str | |
negative_prompt: Optional[str] = "" | |
steps: Optional[int] = None | |
seed: Optional[int] = None | |
width: int | |
height: int | |
n: int = 1 | |
cfg_scale: Optional[float] = None | |
sampler: Optional[str] = None | |
scheduler: Optional[str] = None | |
sd3: Optional[bool] = None | |
flux: Optional[bool] = None | |
flux_weight_dtype: Optional[str] = None | |
flux_fp8_clip: Optional[bool] = None | |
async def comfyui_generate_image( | |
model: str, payload: ImageGenerationPayload, client_id, base_url | |
): | |
ws_url = base_url.replace("http://", "ws://").replace("https://", "wss://") | |
comfyui_prompt = json.loads(COMFYUI_DEFAULT_PROMPT) | |
if payload.cfg_scale: | |
comfyui_prompt["3"]["inputs"]["cfg"] = payload.cfg_scale | |
if payload.sampler: | |
comfyui_prompt["3"]["inputs"]["sampler"] = payload.sampler | |
if payload.scheduler: | |
comfyui_prompt["3"]["inputs"]["scheduler"] = payload.scheduler | |
if payload.sd3: | |
comfyui_prompt["5"]["class_type"] = "EmptySD3LatentImage" | |
if payload.steps: | |
comfyui_prompt["3"]["inputs"]["steps"] = payload.steps | |
comfyui_prompt["4"]["inputs"]["ckpt_name"] = model | |
comfyui_prompt["7"]["inputs"]["text"] = payload.negative_prompt | |
comfyui_prompt["3"]["inputs"]["seed"] = ( | |
payload.seed if payload.seed else random.randint(0, 18446744073709551614) | |
) | |
# as Flux uses a completely different workflow, we must treat it specially | |
if payload.flux: | |
comfyui_prompt = json.loads(FLUX_DEFAULT_PROMPT) | |
comfyui_prompt["12"]["inputs"]["unet_name"] = model | |
comfyui_prompt["25"]["inputs"]["noise_seed"] = ( | |
payload.seed if payload.seed else random.randint(0, 18446744073709551614) | |
) | |
if payload.sampler: | |
comfyui_prompt["16"]["inputs"]["sampler_name"] = payload.sampler | |
if payload.steps: | |
comfyui_prompt["17"]["inputs"]["steps"] = payload.steps | |
if payload.scheduler: | |
comfyui_prompt["17"]["inputs"]["scheduler"] = payload.scheduler | |
if payload.flux_weight_dtype: | |
comfyui_prompt["12"]["inputs"]["weight_dtype"] = payload.flux_weight_dtype | |
if payload.flux_fp8_clip: | |
comfyui_prompt["11"]["inputs"][ | |
"clip_name2" | |
] = "t5xxl_fp8_e4m3fn.safetensors" | |
comfyui_prompt["5"]["inputs"]["batch_size"] = payload.n | |
comfyui_prompt["5"]["inputs"]["width"] = payload.width | |
comfyui_prompt["5"]["inputs"]["height"] = payload.height | |
# set the text prompt for our positive CLIPTextEncode | |
comfyui_prompt["6"]["inputs"]["text"] = payload.prompt | |
try: | |
ws = websocket.WebSocket() | |
ws.connect(f"{ws_url}/ws?clientId={client_id}") | |
log.info("WebSocket connection established.") | |
except Exception as e: | |
log.exception(f"Failed to connect to WebSocket server: {e}") | |
return None | |
try: | |
images = await asyncio.to_thread( | |
get_images, ws, comfyui_prompt, client_id, base_url | |
) | |
except Exception as e: | |
log.exception(f"Error while receiving images: {e}") | |
images = None | |
ws.close() | |
return images | |