github-actions[bot]
GitHub deploy: 094fdd8943c19be1d75365df111aa5ced9238afa
133d4af
import asyncio
import websocket # NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import json
import urllib.request
import urllib.parse
import random
import logging
from config import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["COMFYUI"])
from pydantic import BaseModel
from typing import Optional
COMFYUI_DEFAULT_PROMPT = """
{
"3": {
"inputs": {
"seed": 0,
"steps": 20,
"cfg": 8,
"sampler_name": "euler",
"scheduler": "normal",
"denoise": 1,
"model": [
"4",
0
],
"positive": [
"6",
0
],
"negative": [
"7",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "KSampler",
"_meta": {
"title": "KSampler"
}
},
"4": {
"inputs": {
"ckpt_name": "model.safetensors"
},
"class_type": "CheckpointLoaderSimple",
"_meta": {
"title": "Load Checkpoint"
}
},
"5": {
"inputs": {
"width": 512,
"height": 512,
"batch_size": 1
},
"class_type": "EmptyLatentImage",
"_meta": {
"title": "Empty Latent Image"
}
},
"6": {
"inputs": {
"text": "Prompt",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"7": {
"inputs": {
"text": "Negative Prompt",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode",
"_meta": {
"title": "CLIP Text Encode (Prompt)"
}
},
"8": {
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode",
"_meta": {
"title": "VAE Decode"
}
},
"9": {
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
},
"class_type": "SaveImage",
"_meta": {
"title": "Save Image"
}
}
}
"""
FLUX_DEFAULT_PROMPT = """
{
"5": {
"inputs": {
"width": 1024,
"height": 1024,
"batch_size": 1
},
"class_type": "EmptyLatentImage"
},
"6": {
"inputs": {
"text": "Input Text Here",
"clip": [
"11",
0
]
},
"class_type": "CLIPTextEncode"
},
"8": {
"inputs": {
"samples": [
"13",
0
],
"vae": [
"10",
0
]
},
"class_type": "VAEDecode"
},
"9": {
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
},
"class_type": "SaveImage"
},
"10": {
"inputs": {
"vae_name": "ae.safetensors"
},
"class_type": "VAELoader"
},
"11": {
"inputs": {
"clip_name1": "clip_l.safetensors",
"clip_name2": "t5xxl_fp16.safetensors",
"type": "flux"
},
"class_type": "DualCLIPLoader"
},
"12": {
"inputs": {
"unet_name": "flux1-dev.safetensors",
"weight_dtype": "default"
},
"class_type": "UNETLoader"
},
"13": {
"inputs": {
"noise": [
"25",
0
],
"guider": [
"22",
0
],
"sampler": [
"16",
0
],
"sigmas": [
"17",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "SamplerCustomAdvanced"
},
"16": {
"inputs": {
"sampler_name": "euler"
},
"class_type": "KSamplerSelect"
},
"17": {
"inputs": {
"scheduler": "simple",
"steps": 20,
"denoise": 1,
"model": [
"12",
0
]
},
"class_type": "BasicScheduler"
},
"22": {
"inputs": {
"model": [
"12",
0
],
"conditioning": [
"6",
0
]
},
"class_type": "BasicGuider"
},
"25": {
"inputs": {
"noise_seed": 778937779713005
},
"class_type": "RandomNoise"
}
}
"""
def queue_prompt(prompt, client_id, base_url):
log.info("queue_prompt")
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode("utf-8")
req = urllib.request.Request(f"{base_url}/prompt", data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type, base_url):
log.info("get_image")
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen(f"{base_url}/view?{url_values}") as response:
return response.read()
def get_image_url(filename, subfolder, folder_type, base_url):
log.info("get_image")
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
return f"{base_url}/view?{url_values}"
def get_history(prompt_id, base_url):
log.info("get_history")
with urllib.request.urlopen(f"{base_url}/history/{prompt_id}") as response:
return json.loads(response.read())
def get_images(ws, prompt, client_id, base_url):
prompt_id = queue_prompt(prompt, client_id, base_url)["prompt_id"]
output_images = []
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message["type"] == "executing":
data = message["data"]
if data["node"] is None and data["prompt_id"] == prompt_id:
break # Execution is done
else:
continue # previews are binary data
history = get_history(prompt_id, base_url)[prompt_id]
for o in history["outputs"]:
for node_id in history["outputs"]:
node_output = history["outputs"][node_id]
if "images" in node_output:
for image in node_output["images"]:
url = get_image_url(
image["filename"], image["subfolder"], image["type"], base_url
)
output_images.append({"url": url})
return {"data": output_images}
class ImageGenerationPayload(BaseModel):
prompt: str
negative_prompt: Optional[str] = ""
steps: Optional[int] = None
seed: Optional[int] = None
width: int
height: int
n: int = 1
cfg_scale: Optional[float] = None
sampler: Optional[str] = None
scheduler: Optional[str] = None
sd3: Optional[bool] = None
flux: Optional[bool] = None
flux_weight_dtype: Optional[str] = None
flux_fp8_clip: Optional[bool] = None
async def comfyui_generate_image(
model: str, payload: ImageGenerationPayload, client_id, base_url
):
ws_url = base_url.replace("http://", "ws://").replace("https://", "wss://")
comfyui_prompt = json.loads(COMFYUI_DEFAULT_PROMPT)
if payload.cfg_scale:
comfyui_prompt["3"]["inputs"]["cfg"] = payload.cfg_scale
if payload.sampler:
comfyui_prompt["3"]["inputs"]["sampler"] = payload.sampler
if payload.scheduler:
comfyui_prompt["3"]["inputs"]["scheduler"] = payload.scheduler
if payload.sd3:
comfyui_prompt["5"]["class_type"] = "EmptySD3LatentImage"
if payload.steps:
comfyui_prompt["3"]["inputs"]["steps"] = payload.steps
comfyui_prompt["4"]["inputs"]["ckpt_name"] = model
comfyui_prompt["7"]["inputs"]["text"] = payload.negative_prompt
comfyui_prompt["3"]["inputs"]["seed"] = (
payload.seed if payload.seed else random.randint(0, 18446744073709551614)
)
# as Flux uses a completely different workflow, we must treat it specially
if payload.flux:
comfyui_prompt = json.loads(FLUX_DEFAULT_PROMPT)
comfyui_prompt["12"]["inputs"]["unet_name"] = model
comfyui_prompt["25"]["inputs"]["noise_seed"] = (
payload.seed if payload.seed else random.randint(0, 18446744073709551614)
)
if payload.sampler:
comfyui_prompt["16"]["inputs"]["sampler_name"] = payload.sampler
if payload.steps:
comfyui_prompt["17"]["inputs"]["steps"] = payload.steps
if payload.scheduler:
comfyui_prompt["17"]["inputs"]["scheduler"] = payload.scheduler
if payload.flux_weight_dtype:
comfyui_prompt["12"]["inputs"]["weight_dtype"] = payload.flux_weight_dtype
if payload.flux_fp8_clip:
comfyui_prompt["11"]["inputs"][
"clip_name2"
] = "t5xxl_fp8_e4m3fn.safetensors"
comfyui_prompt["5"]["inputs"]["batch_size"] = payload.n
comfyui_prompt["5"]["inputs"]["width"] = payload.width
comfyui_prompt["5"]["inputs"]["height"] = payload.height
# set the text prompt for our positive CLIPTextEncode
comfyui_prompt["6"]["inputs"]["text"] = payload.prompt
try:
ws = websocket.WebSocket()
ws.connect(f"{ws_url}/ws?clientId={client_id}")
log.info("WebSocket connection established.")
except Exception as e:
log.exception(f"Failed to connect to WebSocket server: {e}")
return None
try:
images = await asyncio.to_thread(
get_images, ws, comfyui_prompt, client_id, base_url
)
except Exception as e:
log.exception(f"Error while receiving images: {e}")
images = None
ws.close()
return images