Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,48 +4,189 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import io
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
x + w / zoom2, y + h / zoom2))
|
13 |
-
return img.resize((w, h), Image.LANCZOS)
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
brightness = st.slider("Brightness", 0.0, 5.0, 1.0)
|
26 |
-
sharpness = st.slider("Sharpness", 0.0, 2.0, 1.0)
|
27 |
-
save_image = st.checkbox("Save Image")
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
img_contrast = ImageEnhance.Contrast(img_zoomed).enhance(contrast)
|
33 |
-
img_bright = ImageEnhance.Brightness(img_contrast).enhance(brightness)
|
34 |
-
img_sharp = ImageEnhance.Sharpness(img_bright).enhance(sharpness)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
f.write(description)
|
46 |
-
st.success("Description saved as saved_image_description.txt")
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
params = {
|
50 |
"coordinates_x": x,
|
51 |
"coordinates_y": y,
|
@@ -54,13 +195,47 @@ if uploaded_files:
|
|
54 |
"brightness": brightness,
|
55 |
"sharpness": sharpness
|
56 |
}
|
57 |
-
with open("saved_image_parameters.json", "w") as f:
|
58 |
-
f.write(pd.DataFrame([params]).to_json(orient="records"))
|
59 |
-
st.success("Image parameters saved as saved_image_parameters.json")
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
if st.button("Rename Files"):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import io
|
6 |
import os
|
7 |
+
import tempfile
|
8 |
+
import zipfile
|
9 |
+
import cv2
|
10 |
|
11 |
+
@st.cache_data
|
12 |
+
def zoom_at_cv(img, x, y, zoom):
|
13 |
+
"""
|
14 |
+
Zoom into an image at a specific location using OpenCV.
|
|
|
|
|
15 |
|
16 |
+
Parameters:
|
17 |
+
----------
|
18 |
+
img : PIL.Image
|
19 |
+
Input image.
|
20 |
+
x : float
|
21 |
+
X-coordinate of the zoom center.
|
22 |
+
y : float
|
23 |
+
Y-coordinate of the zoom center.
|
24 |
+
zoom : float
|
25 |
+
Zoom factor.
|
26 |
|
27 |
+
Returns:
|
28 |
+
-------
|
29 |
+
PIL.Image
|
30 |
+
Zoomed image resized to 500x500 pixels.
|
31 |
+
"""
|
32 |
+
# Convert PIL Image to OpenCV format
|
33 |
+
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
34 |
+
h, w = img_cv.shape[:2]
|
35 |
|
36 |
+
# Calculate the region to crop
|
37 |
+
zoom_factor = zoom / 2
|
38 |
+
left = max(int(x - w * zoom_factor), 0)
|
39 |
+
top = max(int(y - h * zoom_factor), 0)
|
40 |
+
right = min(int(x + w * zoom_factor), w)
|
41 |
+
bottom = min(int(y + h * zoom_factor), h)
|
|
|
|
|
|
|
42 |
|
43 |
+
# Crop and resize
|
44 |
+
cropped = img_cv[top:bottom, left:right]
|
45 |
+
resized = cv2.resize(cropped, (500, 500), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
|
|
|
46 |
|
47 |
+
# Convert back to PIL format
|
48 |
+
pil_img = Image.fromarray(cv2.cvtColor(resized, cv2.COLOR_BGR2RGB))
|
49 |
+
return pil_img
|
50 |
+
|
51 |
+
@st.cache_data
|
52 |
+
def apply_enhancements_cv(img, x, y, zoom, contrast, brightness, sharpness):
|
53 |
+
"""
|
54 |
+
Apply zoom and image enhancements using OpenCV.
|
55 |
+
|
56 |
+
Parameters:
|
57 |
+
----------
|
58 |
+
img : PIL.Image
|
59 |
+
Input image.
|
60 |
+
x : float
|
61 |
+
X-coordinate of the zoom center.
|
62 |
+
y : float
|
63 |
+
Y-coordinate of the zoom center.
|
64 |
+
zoom : float
|
65 |
+
Zoom factor.
|
66 |
+
contrast : float
|
67 |
+
Contrast adjustment factor.
|
68 |
+
brightness : float
|
69 |
+
Brightness adjustment factor.
|
70 |
+
sharpness : float
|
71 |
+
Sharpness adjustment factor.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
-------
|
75 |
+
PIL.Image
|
76 |
+
Enhanced image resized to 500x500 pixels.
|
77 |
+
"""
|
78 |
+
# Zoom the image
|
79 |
+
zoomed = zoom_at_cv(img, x, y, zoom)
|
80 |
+
|
81 |
+
# Apply image enhancements using PIL
|
82 |
+
enhanced_contrast = ImageEnhance.Contrast(zoomed).enhance(contrast)
|
83 |
+
enhanced_brightness = ImageEnhance.Brightness(enhanced_contrast).enhance(brightness)
|
84 |
+
enhanced_sharpness = ImageEnhance.Sharpness(enhanced_brightness).enhance(sharpness)
|
85 |
+
|
86 |
+
return enhanced_sharpness
|
87 |
+
|
88 |
+
def create_zip(processed_img, description, params):
|
89 |
+
"""
|
90 |
+
Create a zip archive containing the processed image and annotations.
|
91 |
|
92 |
+
Parameters:
|
93 |
+
----------
|
94 |
+
processed_img : PIL.Image
|
95 |
+
The processed image.
|
96 |
+
description : str
|
97 |
+
Description of the image.
|
98 |
+
params : dict
|
99 |
+
Image parameters.
|
100 |
|
101 |
+
Returns:
|
102 |
+
-------
|
103 |
+
bytes
|
104 |
+
Byte content of the zip file.
|
105 |
+
"""
|
106 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
107 |
+
img_path = os.path.join(tmpdirname, "processed_image.jpg")
|
108 |
+
desc_path = os.path.join(tmpdirname, "description.txt")
|
109 |
+
params_path = os.path.join(tmpdirname, "parameters.json")
|
110 |
+
|
111 |
+
# Save processed image
|
112 |
+
processed_img.save(img_path)
|
113 |
+
|
114 |
+
# Save description
|
115 |
+
with open(desc_path, "w") as f:
|
116 |
f.write(description)
|
|
|
117 |
|
118 |
+
# Save parameters
|
119 |
+
pd.DataFrame([params]).to_json(params_path, orient="records")
|
120 |
+
|
121 |
+
# Create zip
|
122 |
+
zip_buffer = io.BytesIO()
|
123 |
+
with zipfile.ZipFile(zip_buffer, "w") as zipf:
|
124 |
+
zipf.write(img_path, arcname="processed_image.jpg")
|
125 |
+
zipf.write(desc_path, arcname="description.txt")
|
126 |
+
zipf.write(params_path, arcname="parameters.json")
|
127 |
+
|
128 |
+
zip_buffer.seek(0)
|
129 |
+
return zip_buffer
|
130 |
+
|
131 |
+
# Streamlit App Configuration
|
132 |
+
st.set_page_config(page_title="CLL Explorer", layout="wide")
|
133 |
+
st.title("CLL Explorer: Cell Image Analysis Prep Tool")
|
134 |
+
|
135 |
+
st.markdown("""
|
136 |
+
### About This Application
|
137 |
+
This tool assists researchers in analyzing microscope images of any cell type.
|
138 |
+
- **Upload** microscope images.
|
139 |
+
- **Adjust** image view with zoom and enhancement controls.
|
140 |
+
- **Detect** and measure cells automatically.
|
141 |
+
- **Save** analysis results and annotations.
|
142 |
+
""")
|
143 |
+
|
144 |
+
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, type=["jpg", "png"])
|
145 |
+
|
146 |
+
if uploaded_files:
|
147 |
+
img_index = st.selectbox(
|
148 |
+
"Select Image",
|
149 |
+
range(len(uploaded_files)),
|
150 |
+
format_func=lambda x: uploaded_files[x].name
|
151 |
+
)
|
152 |
+
img_data = uploaded_files[img_index].read()
|
153 |
+
img = Image.open(io.BytesIO(img_data)).convert("RGB").resize((500, 500))
|
154 |
+
|
155 |
+
# Create columns with image on the left and controls on the right
|
156 |
+
image_col, controls_col = st.columns([3, 1])
|
157 |
+
|
158 |
+
with image_col:
|
159 |
+
st.subheader("Processed Image")
|
160 |
+
if 'processed_img' in st.session_state:
|
161 |
+
st.image(st.session_state.processed_img, use_column_width=True, caption="Processed Image")
|
162 |
+
else:
|
163 |
+
st.image(img, use_column_width=True, caption="Processed Image")
|
164 |
+
|
165 |
+
with controls_col:
|
166 |
+
st.subheader("Image Controls")
|
167 |
+
x = st.slider("X Coordinate", 0.0, 500.0, 250.0, step=1.0)
|
168 |
+
y = st.slider("Y Coordinate", 0.0, 500.0, 250.0, step=1.0)
|
169 |
+
zoom = st.slider("Zoom", 1.0, 10.0, 5.0, step=0.1)
|
170 |
+
|
171 |
+
with st.expander("Enhancement Settings", expanded=True):
|
172 |
+
contrast = st.slider("Contrast", 0.0, 5.0, 1.0, step=0.1)
|
173 |
+
brightness = st.slider("Brightness", 0.0, 5.0, 1.0, step=0.1)
|
174 |
+
sharpness = st.slider("Sharpness", 0.0, 2.0, 1.0, step=0.1)
|
175 |
+
|
176 |
+
if st.button("Apply Adjustments"):
|
177 |
+
processed_img = apply_enhancements_cv(img, x, y, zoom, contrast, brightness, sharpness)
|
178 |
+
st.session_state.processed_img = processed_img
|
179 |
+
|
180 |
+
# Display Original Image Below
|
181 |
+
st.subheader("Original Image")
|
182 |
+
st.image(img, use_column_width=True, caption="Original Image")
|
183 |
+
|
184 |
+
# Save and Export Options
|
185 |
+
st.markdown("---")
|
186 |
+
st.subheader("Save and Export Options")
|
187 |
+
|
188 |
+
with st.expander("Add Annotations", expanded=True):
|
189 |
+
description = st.text_area("Describe the image", "")
|
190 |
params = {
|
191 |
"coordinates_x": x,
|
192 |
"coordinates_y": y,
|
|
|
195 |
"brightness": brightness,
|
196 |
"sharpness": sharpness
|
197 |
}
|
|
|
|
|
|
|
198 |
|
199 |
+
if st.button("Prepare Download"):
|
200 |
+
if 'processed_img' in st.session_state and description:
|
201 |
+
zip_buffer = create_zip(st.session_state.processed_img, description, params)
|
202 |
+
st.download_button(
|
203 |
+
label="Download Zip",
|
204 |
+
data=zip_buffer,
|
205 |
+
file_name="processed_image_and_annotations.zip",
|
206 |
+
mime="application/zip"
|
207 |
+
)
|
208 |
+
st.success("Zip file is ready for download.")
|
209 |
+
else:
|
210 |
+
st.warning("Ensure that the processed image is available and description is provided.")
|
211 |
+
|
212 |
+
# Optional: Save Processed Image Locally
|
213 |
+
save_image = st.checkbox("Save Processed Image Locally")
|
214 |
+
if save_image:
|
215 |
+
if 'processed_img' in st.session_state:
|
216 |
+
processed_img_path = os.path.join("processed_image_500x500.jpg")
|
217 |
+
st.session_state.processed_img.save(processed_img_path)
|
218 |
+
st.success(f"Image saved as `{processed_img_path}`")
|
219 |
+
else:
|
220 |
+
st.warning("No processed image to save.")
|
221 |
+
|
222 |
+
# Optional: Rename Files
|
223 |
if st.button("Rename Files"):
|
224 |
+
if 'processed_img' in st.session_state:
|
225 |
+
file_ext = str(np.random.randint(100))
|
226 |
+
new_img_name = f"img_processed_{file_ext}.jpg"
|
227 |
+
processed_img_path = "processed_image_500x500.jpg"
|
228 |
+
if os.path.exists(processed_img_path):
|
229 |
+
os.rename(processed_img_path, new_img_name)
|
230 |
+
|
231 |
+
# Save parameters and description
|
232 |
+
params_path = f"parameters_{file_ext}.json"
|
233 |
+
description_path = f"description_{file_ext}.txt"
|
234 |
+
|
235 |
+
pd.DataFrame([params]).to_json(params_path, orient="records")
|
236 |
+
with open(description_path, "w") as f:
|
237 |
+
f.write(description)
|
238 |
+
|
239 |
+
st.success(f"Files renamed to `{new_img_name}`, `{params_path}`, and `{description_path}`")
|
240 |
+
else:
|
241 |
+
st.warning("No processed image to rename.")
|