Upload 2 files
Browse files- requirements.txt +10 -0
- separate.py +214 -0
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.1
|
2 |
+
audioread==3.0.0
|
3 |
+
librosa==0.10.0.post2
|
4 |
+
onnx==1.14.0
|
5 |
+
onnxruntime==1.15.0
|
6 |
+
pydub==0.25.1
|
7 |
+
soundstretch==1.2
|
8 |
+
tqdm==4.65.0
|
9 |
+
Pillow==9.5.0
|
10 |
+
resampy==0.4.2
|
separate.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime as ort
|
7 |
+
from pathlib import Path
|
8 |
+
from argparse import ArgumentParser
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
|
12 |
+
class ConvTDFNet:
|
13 |
+
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
|
14 |
+
super(ConvTDFNet, self).__init__()
|
15 |
+
self.dim_c = 4
|
16 |
+
self.dim_f = dim_f
|
17 |
+
self.dim_t = 2**dim_t
|
18 |
+
self.n_fft = n_fft
|
19 |
+
self.hop = hop
|
20 |
+
self.n_bins = self.n_fft // 2 + 1
|
21 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
22 |
+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
23 |
+
self.target_name = target_name
|
24 |
+
|
25 |
+
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
|
26 |
+
|
27 |
+
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
|
28 |
+
self.n = L // 2
|
29 |
+
|
30 |
+
def stft(self, x):
|
31 |
+
x = x.reshape([-1, self.chunk_size])
|
32 |
+
x = torch.stft(
|
33 |
+
x,
|
34 |
+
n_fft=self.n_fft,
|
35 |
+
hop_length=self.hop,
|
36 |
+
window=self.window,
|
37 |
+
center=True,
|
38 |
+
return_complex=True,
|
39 |
+
)
|
40 |
+
x = torch.view_as_real(x)
|
41 |
+
x = x.permute([0, 3, 1, 2])
|
42 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
43 |
+
[-1, self.dim_c, self.n_bins, self.dim_t]
|
44 |
+
)
|
45 |
+
return x[:, :, : self.dim_f]
|
46 |
+
|
47 |
+
# Inversed Short-time Fourier transform (STFT).
|
48 |
+
def istft(self, x, freq_pad=None):
|
49 |
+
freq_pad = (
|
50 |
+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
51 |
+
if freq_pad is None
|
52 |
+
else freq_pad
|
53 |
+
)
|
54 |
+
x = torch.cat([x, freq_pad], -2)
|
55 |
+
c = 4 * 2 if self.target_name == "*" else 2
|
56 |
+
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
57 |
+
[-1, 2, self.n_bins, self.dim_t]
|
58 |
+
)
|
59 |
+
x = x.permute([0, 2, 3, 1])
|
60 |
+
x = x.contiguous()
|
61 |
+
x = torch.view_as_complex(x)
|
62 |
+
x = torch.istft(
|
63 |
+
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
64 |
+
)
|
65 |
+
return x.reshape([-1, c, self.chunk_size])
|
66 |
+
|
67 |
+
class Predictor:
|
68 |
+
def __init__(self, args):
|
69 |
+
self.args = args
|
70 |
+
self.model_ = ConvTDFNet(
|
71 |
+
target_name="vocals",
|
72 |
+
L=11,
|
73 |
+
dim_f=args["dim_f"],
|
74 |
+
dim_t=args["dim_t"],
|
75 |
+
n_fft=args["n_fft"]
|
76 |
+
)
|
77 |
+
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
|
80 |
+
else:
|
81 |
+
self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
|
82 |
+
|
83 |
+
def demix(self, mix):
|
84 |
+
samples = mix.shape[-1]
|
85 |
+
margin = self.args["margin"]
|
86 |
+
chunk_size = self.args["chunks"] * 44100
|
87 |
+
|
88 |
+
assert not margin == 0, "margin cannot be zero!"
|
89 |
+
|
90 |
+
if margin > chunk_size:
|
91 |
+
margin = chunk_size
|
92 |
+
|
93 |
+
segmented_mix = {}
|
94 |
+
|
95 |
+
if self.args["chunks"] == 0 or samples < chunk_size:
|
96 |
+
chunk_size = samples
|
97 |
+
|
98 |
+
counter = -1
|
99 |
+
for skip in range(0, samples, chunk_size):
|
100 |
+
counter += 1
|
101 |
+
s_margin = 0 if counter == 0 else margin
|
102 |
+
end = min(skip + chunk_size + margin, samples)
|
103 |
+
start = skip - s_margin
|
104 |
+
segmented_mix[skip] = mix[:, start:end].copy()
|
105 |
+
if end == samples:
|
106 |
+
break
|
107 |
+
|
108 |
+
sources = self.demix_base(segmented_mix, margin_size=margin)
|
109 |
+
return sources
|
110 |
+
|
111 |
+
def demix_base(self, mixes, margin_size):
|
112 |
+
chunked_sources = []
|
113 |
+
progress_bar = tqdm(total=len(mixes))
|
114 |
+
progress_bar.set_description("Processing")
|
115 |
+
|
116 |
+
for mix in mixes:
|
117 |
+
cmix = mixes[mix]
|
118 |
+
sources = []
|
119 |
+
n_sample = cmix.shape[1]
|
120 |
+
model = self.model_
|
121 |
+
trim = model.n_fft // 2
|
122 |
+
gen_size = model.chunk_size - 2 * trim
|
123 |
+
pad = gen_size - n_sample % gen_size
|
124 |
+
mix_p = np.concatenate(
|
125 |
+
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
126 |
+
)
|
127 |
+
mix_waves = []
|
128 |
+
i = 0
|
129 |
+
while i < n_sample + pad:
|
130 |
+
waves = np.array(mix_p[:, i : i + model.chunk_size])
|
131 |
+
mix_waves.append(waves)
|
132 |
+
i += gen_size
|
133 |
+
|
134 |
+
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
_ort = self.model
|
138 |
+
spek = model.stft(mix_waves)
|
139 |
+
if self.args["denoise"]:
|
140 |
+
spec_pred = (
|
141 |
+
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
142 |
+
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
143 |
+
)
|
144 |
+
tar_waves = model.istft(torch.tensor(spec_pred))
|
145 |
+
else:
|
146 |
+
tar_waves = model.istft(
|
147 |
+
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
|
148 |
+
)
|
149 |
+
tar_signal = (
|
150 |
+
tar_waves[:, :, trim:-trim]
|
151 |
+
.transpose(0, 1)
|
152 |
+
.reshape(2, -1)
|
153 |
+
.numpy()[:, :-pad]
|
154 |
+
)
|
155 |
+
|
156 |
+
start = 0 if mix == 0 else margin_size
|
157 |
+
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
158 |
+
|
159 |
+
if margin_size == 0:
|
160 |
+
end = None
|
161 |
+
|
162 |
+
sources.append(tar_signal[:, start:end])
|
163 |
+
|
164 |
+
progress_bar.update(1)
|
165 |
+
|
166 |
+
chunked_sources.append(sources)
|
167 |
+
_sources = np.concatenate(chunked_sources, axis=-1)
|
168 |
+
|
169 |
+
progress_bar.close()
|
170 |
+
return _sources
|
171 |
+
|
172 |
+
def predict(self, file_path):
|
173 |
+
|
174 |
+
mix, rate = librosa.load(file_path, mono=False, sr=44100)
|
175 |
+
|
176 |
+
if mix.ndim == 1:
|
177 |
+
mix = np.asfortranarray([mix, mix])
|
178 |
+
|
179 |
+
mix = mix.T
|
180 |
+
sources = self.demix(mix.T)
|
181 |
+
opt = sources[0].T
|
182 |
+
|
183 |
+
return (mix - opt, opt, rate)
|
184 |
+
|
185 |
+
def main():
|
186 |
+
parser = ArgumentParser()
|
187 |
+
|
188 |
+
parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
|
189 |
+
parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
|
190 |
+
parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
|
191 |
+
|
192 |
+
parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
|
193 |
+
parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
|
194 |
+
parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
|
195 |
+
parser.add_argument("-F", "--n_fft", type=int, default=6144)
|
196 |
+
parser.add_argument("-t", "--dim_t", type=int, default=8)
|
197 |
+
parser.add_argument("-f", "--dim_f", type=int, default=2048)
|
198 |
+
|
199 |
+
args = parser.parse_args()
|
200 |
+
dict_args = vars(args)
|
201 |
+
|
202 |
+
os.makedirs(args.output, exist_ok=True)
|
203 |
+
|
204 |
+
for file_path in args.files:
|
205 |
+
predictor = Predictor(args=dict_args)
|
206 |
+
vocals, no_vocals, sampling_rate = predictor.predict(file_path)
|
207 |
+
filename = os.path.splitext(os.path.split(file_path)[-1])[0]
|
208 |
+
sf.write(os.path.join(args.output, filename+"_no_vocals.wav"), no_vocals, sampling_rate)
|
209 |
+
sf.write(os.path.join(args.output, filename+"_vocals.wav"), vocals, sampling_rate)
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
main()
|
213 |
+
|
214 |
+
|