import gradio as gr import subprocess import os def audio_model_inference(files, output_folder, model_path, denoise, margin, chunks, n_fft, dim_t, dim_f): # 构建命令行调用字符串 cmd = f"separate.py {' '.join(files)}" if output_folder: cmd += f" -o {output_folder}" if model_path: cmd += f" -m {model_path}" if denoise: cmd += " -d" if margin: cmd += f" -M {margin}" if chunks: cmd += f" -c {chunks}" if n_fft: cmd += f" -F {n_fft}" if dim_t: cmd += f" -t {dim_t}" if dim_f: cmd += f" -f {dim_f}" # 执行命令行调用 result = subprocess.run(cmd, shell=True, capture_output=True, text=True) # 检查命令是否成功执行 if result.returncode != 0: return f"Error: {result.stderr}" # 读取输出文件 vocals_file = f"{os.path.splitext(os.path.basename(files[0]))[0]}_vocals.wav" no_vocals_file = f"{os.path.splitext(os.path.basename(files[0]))[0]}_no_vocals.wav" vocals_path = os.path.join(output_folder, vocals_file) no_vocals_path = os.path.join(output_folder, no_vocals_file) # 确保文件存在 if not os.path.exists(vocals_path) or not os.path.exists(no_vocals_path): return "Error: Output files not found." # 读取音频文件 vocals_audio = open(vocals_path, 'rb').read() no_vocals_audio = open(no_vocals_path, 'rb').read() return (vocals_audio, no_vocals_audio) # Gradio 界面组件 inputs = [ gr.inputs.File(label="Source Audio Files", type='file', file_count='multiple'), gr.inputs.Textbox(label="Output Folder", default="output/"), gr.inputs.Textbox(label="Model Path", default="model.onnx"), gr.inputs.Checkbox(label="Enable Denoising", default=False), gr.inputs.Number(label="Margin", default=0.1), gr.inputs.Number(label="Chunk Size", default=1024), gr.inputs.Number(label="FFT Size", default=2048), gr.inputs.Number(label="Time Dimension", default=512), gr.inputs.Number(label="Frequency Dimension", default=64) ] outputs = [gr.outputs.Audio(label="Vocals"), gr.outputs.Audio(label="No Vocals")] # 创建界面 iface = gr.Interface( fn=audio_model_inference, inputs=inputs, outputs=outputs, title="Audio Separation Model", description="Upload audio files and configure parameters to process them using the audio separation model." ) iface.launch()