File size: 2,595 Bytes
171f55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gc
import json
import librosa
import laion_clap
import torch
import numpy as np
import time
from itertools import islice
from safetensors import safe_open
from safetensors.numpy import save_file

def read_default_prompt():
    import json
    with open('/root/autodl-tmp/dedup_audio_text_80.json', 'r') as f:
        data = json.load(f)
    return data


def init_audio_pipe():
    # quantization
    def int16_to_float32(x):
        return (x / 32767.0).astype(np.float32)

    def float32_to_int16(x):
        x = np.clip(x, a_min=-1., a_max=1.)
        return (x * 32767.).astype(np.int16)

    model = laion_clap.CLAP_Module(enable_fusion=False)
    model.load_ckpt()  # download the default pretrained checkpoint.

    # Get audio embeddings from audio data
    audio_data, _ = librosa.load('/root/autodl-tmp/下载.wav', sr=48000)  # sample rate should be 48000
    audio_data = audio_data.reshape(1, -1)  # Make it (1,T) or (N,T)
    audio_data = torch.from_numpy(
        int16_to_float32(float32_to_int16(audio_data))).float()  # quantize before send it in to the model
    audio_embed = model.get_audio_embedding_from_data(x=audio_data, use_tensor=True)
    # print(audio_embed[:, -20:])
    print(audio_embed)
    print(audio_embed.shape)

    # Get text embedings from texts, but return torch tensor:
    start_time = time.time()

    # change this file to iterator the text_data batch_size 300 and save the embedding to audio_text.safetensors
    text_data = read_default_prompt()
    batch_size = 256
    num_batches = int(np.ceil(len(text_data) / batch_size))

    text_embed = []
    for i in range(num_batches):
        # Get the next batch of text data
        batch_data = list(islice(text_data, i * batch_size, (i + 1) * batch_size))

        # Embed the batch of text data
        batch_embed = model.get_text_embedding(batch_data, use_tensor=False)

        # Append the batch embeddings to the list
        text_embed.append(batch_embed)

    # Concatenate the embeddings from all batches into a single tensor
    text_embed = np.concatenate(text_embed)

    # Save the embeddings to a file
    print(text_embed)
    print(text_embed.shape)

    tensors = {
        "text_embed": text_embed,
    }
    save_file(tensors, "/root/autodl-tmp/audio_text_embeddings.safetensors")
    # end_time = time.time()
    # print(end_time - start_time)
    #
    # result_tensor = torch.matmul(audio_embed, text_embed.transpose(0, 1))
    # similarity_scores = torch.softmax(result_tensor, dim=1)
    # print(similarity_scores)


if __name__ == "__main__":
    init_audio_pipe()