import gc import json import librosa import laion_clap import torch import numpy as np import time from itertools import islice from safetensors import safe_open from safetensors.numpy import save_file def read_default_prompt(): import json with open('/root/autodl-tmp/dedup_audio_text_80.json', 'r') as f: data = json.load(f) return data def init_audio_pipe(): # quantization def int16_to_float32(x): return (x / 32767.0).astype(np.float32) def float32_to_int16(x): x = np.clip(x, a_min=-1., a_max=1.) return (x * 32767.).astype(np.int16) model = laion_clap.CLAP_Module(enable_fusion=False) model.load_ckpt() # download the default pretrained checkpoint. # Get audio embeddings from audio data audio_data, _ = librosa.load('/root/autodl-tmp/下载.wav', sr=48000) # sample rate should be 48000 audio_data = audio_data.reshape(1, -1) # Make it (1,T) or (N,T) audio_data = torch.from_numpy( int16_to_float32(float32_to_int16(audio_data))).float() # quantize before send it in to the model audio_embed = model.get_audio_embedding_from_data(x=audio_data, use_tensor=True) # print(audio_embed[:, -20:]) print(audio_embed) print(audio_embed.shape) # Get text embedings from texts, but return torch tensor: start_time = time.time() # change this file to iterator the text_data batch_size 300 and save the embedding to audio_text.safetensors text_data = read_default_prompt() batch_size = 256 num_batches = int(np.ceil(len(text_data) / batch_size)) text_embed = [] for i in range(num_batches): # Get the next batch of text data batch_data = list(islice(text_data, i * batch_size, (i + 1) * batch_size)) # Embed the batch of text data batch_embed = model.get_text_embedding(batch_data, use_tensor=False) # Append the batch embeddings to the list text_embed.append(batch_embed) # Concatenate the embeddings from all batches into a single tensor text_embed = np.concatenate(text_embed) # Save the embeddings to a file print(text_embed) print(text_embed.shape) tensors = { "text_embed": text_embed, } save_file(tensors, "/root/autodl-tmp/audio_text_embeddings.safetensors") # end_time = time.time() # print(end_time - start_time) # # result_tensor = torch.matmul(audio_embed, text_embed.transpose(0, 1)) # similarity_scores = torch.softmax(result_tensor, dim=1) # print(similarity_scores) if __name__ == "__main__": init_audio_pipe()