File size: 3,796 Bytes
e87a462
 
 
 
 
 
 
 
 
e9256f0
 
e87a462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9256f0
 
 
 
 
 
 
 
 
 
 
 
e87a462
 
 
2b369df
e87a462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e736992
e87a462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b369df
e87a462
e9256f0
2b369df
e87a462
e9256f0
e87a462
e9256f0
 
e87a462
 
 
 
 
 
 
 
e9256f0
e87a462
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import gradio as gr
import cv2 

from models.HybridGNet2IGSC import Hybrid 
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
import scipy.sparse as sp
import torch

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
hybrid = None

def getDenseMask(landmarks):
    RL = landmarks[0:44]
    LL = landmarks[44:94]
    H = landmarks[94:]
    
    img = np.zeros([1024,1024], dtype = 'uint8')
    
    RL = RL.reshape(-1, 1, 2).astype('int')
    LL = LL.reshape(-1, 1, 2).astype('int')
    H = H.reshape(-1, 1, 2).astype('int')

    img = cv2.drawContours(img, [RL], -1, 1, -1)
    img = cv2.drawContours(img, [LL], -1, 1, -1)
    img = cv2.drawContours(img, [H], -1, 2, -1)
    
    return img


def drawOnTop(img, landmarks):
    output = getDenseMask(landmarks)
    
    image = np.zeros([1024, 1024, 3])
    image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
    image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float') 
    image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float') 

    image = np.clip(image, 0, 1)
    
    RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
    
    # Draw the landmarks as dots
    
    for l in RL:
        image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (1, 1, 0), -1)
    for l in LL:
        image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (1, 1, 0), -1)
    for l in H:
        image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (0, 1, 1), -1)
    
    return image
    

def loadModel(device):    
    A, AD, D, U = genMatrixesLungsHeart()
    N1 = A.shape[0]
    N2 = AD.shape[0]

    A = sp.csc_matrix(A).tocoo()
    AD = sp.csc_matrix(AD).tocoo()
    D = sp.csc_matrix(D).tocoo()
    U = sp.csc_matrix(U).tocoo()

    D_ = [D.copy()]
    U_ = [U.copy()]

    config = {}

    config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
    A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
    
    A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))

    config['latents'] = 64
    config['inputsize'] = 1024

    f = 32
    config['filters'] = [2, f, f, f, f//2, f//2, f//2]
    config['skip_features'] = f

    hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
    hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
    hybrid.eval()
    
    return hybrid


def pad_to_square(img):
    h, w = img.shape[:2]
    
    if h > w:
        padw = (h - w) 
        auxw = padw % 2
        img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant')
        
        padh = 0
        auxh = 0
        
    else:
        padh = (w - h) 
        auxh = padh % 2
        img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant')

        padw = 0
        auxw = 0
        
    return img, (padh, padw, auxh, auxw)
    

def preprocess(input_img):
    img, padding = pad_to_square(input_img)
    
    h, w = img.shape[:2]
    if h != 1024 or w != 1024:
        img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC)
        
    return img, (h, w, padding)

    
def segment(input_img):
    global hybrid, device
    
    if hybrid is None:
        hybrid = loadModel(device)
    
    input_img = cv2.imread(input_img, 0) / 255.0
    
    img, (h, w, padding) = preprocess(input_img)    
        
    data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
    
    with torch.no_grad():
        output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) * 1024
       
    return drawOnTop(img, output)


if __name__ == "__main__":    
    demo = gr.Interface(segment, gr.Image(type="filepath"), "image")
    demo.launch()