File size: 4,280 Bytes
698d2dc
c157335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda6ce9
c157335
dda6ce9
 
 
 
 
c157335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65bfa7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777389c
65bfa7f
 
 
 
053c981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394abec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

def load_model(model_name):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)

classifier = load_model("ngocminhta/authscan-baseline")
classifier2 = load_model("ngocminhta/authscan-baseline-machine")

TEXT_CLASS_MAPPING_MACHINE = {
    'LABEL_0': 'Gemini 1.5 Pro',
    'LABEL_1': 'Gemini 2.0 Experimental',
    'LABEL_2': 'GPT-4o Mini',
    'LABEL_3': 'Llama 3.1 8B'
}

TEXT_CLASS_MAPPING = {
    'LABEL_0': 'Human-Written',
    'LABEL_1': 'Machine-Generated'
}

def update_language(language):
    if language == 'Java' or language == 'Python':
        return gr.update(language='python')
    elif language == 'C':
        return gr.update(language='c')
    elif language == 'C++':
        return gr.update(language='cpp')
    return gr.update(language='python')

def process_result_detection_tab(text, language): 
    result = classifier(f"Language: {language}\n\n{text}")[0]
    result_machine = classifier2(f"Language: {language}\n\n{text}")[0]

    labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
    labels_machine = [TEXT_CLASS_MAPPING_MACHINE[x['label']] for x in result_machine]

    scores = list(np.array([x['score'] for x in result]))
    scores_machine = list(np.array([x['score'] for x in result_machine]))
    final_results = dict(zip(labels, scores))
    if max(final_results, key=final_results.get) == 'Machine-Generated':
        final_results_machine = dict(zip(labels_machine, scores_machine))
    else:
        final_results_machine = None
    return final_results, final_results_machine

def clear_detection_tab():
    return "", gr.update(interactive=False)

css = """
body.dark-mode {
    background-color: #2c2c2c;
    color: white;
}
body.light-mode {
    background-color: white;
    color: black;
}
#dark-mode-toggle {
    position: fixed;
    top: 10px;
    right: 10px;
    z-index: 1000;
    padding: 10px 15px;
    background-color: #007bff;
    color: white;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    font-size: 14px;
}
#dark-mode-toggle:hover {
    background-color: #0056b3;
}
"""

js = """
function toggleDarkMode() {
    const body = document.body;
    if (body.classList.contains('dark-mode')) {
        body.classList.remove('dark-mode');
        body.classList.add('light-mode');
    } else {
        body.classList.remove('light-mode');
        body.classList.add('dark-mode');
    }
}
"""

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""<h1><center>AuthScan</center></h1>""")
    gr.HTML("<script>{}</script>".format(js))
    gr.HTML(
        '<button id="dark-mode-toggle" onclick="toggleDarkMode()">Switch</button>'
    )
    with gr.Tab("Code Detection"):
        with gr.Row():
            language = gr.Dropdown(
                choices=["C", "C++", "Java", "Python"],
                label="Select Programming Language",
                value="C"
            )
    
        with gr.Row():
            input_text = gr.Code(
              label="Enter code here",
              language="python",
              elem_id="code_input",
            )
    
        with gr.Row():
            check_button = gr.Button("Check Origin", variant="primary")
            clear_button = gr.Button("Clear", variant="stop")
    
        out = gr.Label(label='Result')
        out_machine = gr.Label(label='Detailed Information')
        # When language is changed, update the code component's language
        language.change(update_language, inputs=language, outputs=input_text)
    
        check_button.click(process_result_detection_tab, inputs=[input_text, language], outputs=[out, out_machine])
        # out_machine.change(lambda x: gr.update(visible=True) if out_machine else gr.update(visible=False), inputs=out_machine, outputs=out_machine)
        clear_button.click(clear_detection_tab, inputs=[], outputs=[input_text, check_button])
        
    with gr.Tab("Text Detection"):
        gr.Markdown("""Under development!""")
        
demo.launch(share=True)