ngocminhta commited on
Commit
c157335
·
verified ·
1 Parent(s): 924aef4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -63
app.py CHANGED
@@ -1,64 +1,79 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
4
+
5
+ def load_model(model_name):
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
8
+ return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)
9
+
10
+ classifier = load_model("ngocminhta/authscan-baseline")
11
+ classifier2 = load_model("ngocminhta/authscan-baseline-machine")
12
+
13
+ TEXT_CLASS_MAPPING_MACHINE = {
14
+ 'LABEL_0': 'Gemini 1.5 Pro',
15
+ 'LABEL_1': 'Gemini 2.0 Experimental',
16
+ 'LABEL_2': 'GPT-4o Mini',
17
+ 'LABEL_3': 'Llama 3.1 8B'
18
+ }
19
+
20
+ TEXT_CLASS_MAPPING = {
21
+ 'LABEL_0': 'Human-Written',
22
+ 'LABEL_1': 'Machine-Generated'
23
+ }
24
+
25
+ def update_language(language):
26
+ if language == 'java':
27
+ return gr.update(language='python')
28
+ return gr.update(language=language)
29
+
30
+ def process_result_detection_tab(text, language):
31
+ result = classifier(f"Language: {language}\n\n{text}")[0]
32
+ result_machine = classifier2(f"Language: {language}\n\n{text}")[0]
33
+
34
+ labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
35
+ labels_machine = [TEXT_CLASS_MAPPING_MACHINE[x['label']] for x in result_machine]
36
+
37
+ scores = list(np.array([x['score'] for x in result]))
38
+ scores_machine = list(np.array([x['score'] for x in result_machine]))
39
+ final_results = dict(zip(labels, scores))
40
+ if max(final_results, key=final_results.get) == 'Machine-Generated':
41
+ final_results_machine = dict(zip(labels_machine, scores_machine))
42
+ else:
43
+ final_results_machine = None
44
+ return final_results, final_results_machine
45
+
46
+ def clear_detection_tab():
47
+ return "", gr.update(interactive=False)
48
+
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown("""<h1><center>LLM-DetectAIve</center></h1>""")
51
+
52
+ with gr.Row():
53
+ language = gr.Dropdown(
54
+ choices=["c", "cpp", "java", "python"],
55
+ label="Select Programming Language",
56
+ value="python"
57
+ )
58
+
59
+ with gr.Row():
60
+ input_text = gr.Code(
61
+ label="Enter code here",
62
+ language="python",
63
+ elem_id="code_input",
64
+ )
65
+
66
+ with gr.Row():
67
+ check_button = gr.Button("Check Origin", variant="primary")
68
+ clear_button = gr.Button("Clear", variant="stop")
69
+
70
+ out = gr.Label(label='Result')
71
+ out_machine = gr.Label(label='Detailed Information')
72
+ # When language is changed, update the code component's language
73
+ language.change(update_language, inputs=language, outputs=input_text)
74
+
75
+ check_button.click(process_result_detection_tab, inputs=[input_text, language], outputs=[out, out_machine])
76
+ # out_machine.change(lambda x: gr.update(visible=True) if out_machine else gr.update(visible=False), inputs=out_machine, outputs=out_machine)
77
+ clear_button.click(clear_detection_tab, inputs=[], outputs=[input_text, check_button])
78
+
79
+ demo.launch(debug=True)