Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,79 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
|
5 |
+
def load_model(model_name):
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)
|
9 |
+
|
10 |
+
classifier = load_model("ngocminhta/authscan-baseline")
|
11 |
+
classifier2 = load_model("ngocminhta/authscan-baseline-machine")
|
12 |
+
|
13 |
+
TEXT_CLASS_MAPPING_MACHINE = {
|
14 |
+
'LABEL_0': 'Gemini 1.5 Pro',
|
15 |
+
'LABEL_1': 'Gemini 2.0 Experimental',
|
16 |
+
'LABEL_2': 'GPT-4o Mini',
|
17 |
+
'LABEL_3': 'Llama 3.1 8B'
|
18 |
+
}
|
19 |
+
|
20 |
+
TEXT_CLASS_MAPPING = {
|
21 |
+
'LABEL_0': 'Human-Written',
|
22 |
+
'LABEL_1': 'Machine-Generated'
|
23 |
+
}
|
24 |
+
|
25 |
+
def update_language(language):
|
26 |
+
if language == 'java':
|
27 |
+
return gr.update(language='python')
|
28 |
+
return gr.update(language=language)
|
29 |
+
|
30 |
+
def process_result_detection_tab(text, language):
|
31 |
+
result = classifier(f"Language: {language}\n\n{text}")[0]
|
32 |
+
result_machine = classifier2(f"Language: {language}\n\n{text}")[0]
|
33 |
+
|
34 |
+
labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
|
35 |
+
labels_machine = [TEXT_CLASS_MAPPING_MACHINE[x['label']] for x in result_machine]
|
36 |
+
|
37 |
+
scores = list(np.array([x['score'] for x in result]))
|
38 |
+
scores_machine = list(np.array([x['score'] for x in result_machine]))
|
39 |
+
final_results = dict(zip(labels, scores))
|
40 |
+
if max(final_results, key=final_results.get) == 'Machine-Generated':
|
41 |
+
final_results_machine = dict(zip(labels_machine, scores_machine))
|
42 |
+
else:
|
43 |
+
final_results_machine = None
|
44 |
+
return final_results, final_results_machine
|
45 |
+
|
46 |
+
def clear_detection_tab():
|
47 |
+
return "", gr.update(interactive=False)
|
48 |
+
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("""<h1><center>LLM-DetectAIve</center></h1>""")
|
51 |
+
|
52 |
+
with gr.Row():
|
53 |
+
language = gr.Dropdown(
|
54 |
+
choices=["c", "cpp", "java", "python"],
|
55 |
+
label="Select Programming Language",
|
56 |
+
value="python"
|
57 |
+
)
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
input_text = gr.Code(
|
61 |
+
label="Enter code here",
|
62 |
+
language="python",
|
63 |
+
elem_id="code_input",
|
64 |
+
)
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
check_button = gr.Button("Check Origin", variant="primary")
|
68 |
+
clear_button = gr.Button("Clear", variant="stop")
|
69 |
+
|
70 |
+
out = gr.Label(label='Result')
|
71 |
+
out_machine = gr.Label(label='Detailed Information')
|
72 |
+
# When language is changed, update the code component's language
|
73 |
+
language.change(update_language, inputs=language, outputs=input_text)
|
74 |
+
|
75 |
+
check_button.click(process_result_detection_tab, inputs=[input_text, language], outputs=[out, out_machine])
|
76 |
+
# out_machine.change(lambda x: gr.update(visible=True) if out_machine else gr.update(visible=False), inputs=out_machine, outputs=out_machine)
|
77 |
+
clear_button.click(clear_detection_tab, inputs=[], outputs=[input_text, check_button])
|
78 |
+
|
79 |
+
demo.launch(debug=True)
|