Spaces:
Sleeping
Sleeping
Commit
·
53ef3bd
1
Parent(s):
e3a4a85
Upload 2 files
Browse files- Dockerfile +22 -0
- app.py +7 -8
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
COPY requirements.txt .
|
7 |
+
|
8 |
+
RUN apt-get update && \
|
9 |
+
apt-get install -y --no-install-recommends \
|
10 |
+
build-essential \
|
11 |
+
&& rm -rf /var/lib/apt/lists/*
|
12 |
+
|
13 |
+
RUN pip install --upgrade pip && \
|
14 |
+
pip install -r requirements.txt
|
15 |
+
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
EXPOSE 5000
|
19 |
+
|
20 |
+
ENV PORT=8000
|
21 |
+
EXPOSE $PORT
|
22 |
+
CMD ["sh", "-c", "uvicorn app:app --host 0.0.0.0 --port $PORT"]
|
app.py
CHANGED
@@ -23,8 +23,7 @@ app.add_middleware(
|
|
23 |
|
24 |
class Opt:
|
25 |
def __init__(self):
|
26 |
-
self.model_name = "
|
27 |
-
self.model_path = "core/model.pth"
|
28 |
self.database_path = "core/seen_db"
|
29 |
self.embedding_dim = 768
|
30 |
self.device_num = 1
|
@@ -40,12 +39,12 @@ def load_model_resources():
|
|
40 |
global model, tokenizer, index, label_dict, is_mixed_dict
|
41 |
|
42 |
model = TextEmbeddingModel(opt.model_name)
|
43 |
-
state_dict = torch.load(opt.model_path, map_location=model.model.device)
|
44 |
-
new_state_dict={}
|
45 |
-
for key in state_dict.keys():
|
46 |
-
|
47 |
-
|
48 |
-
model.load_state_dict(state_dict)
|
49 |
tokenizer=model.tokenizer
|
50 |
|
51 |
index = Indexer(opt.embedding_dim)
|
|
|
23 |
|
24 |
class Opt:
|
25 |
def __init__(self):
|
26 |
+
self.model_name = "ngocminhta/falcon-v1"
|
|
|
27 |
self.database_path = "core/seen_db"
|
28 |
self.embedding_dim = 768
|
29 |
self.device_num = 1
|
|
|
39 |
global model, tokenizer, index, label_dict, is_mixed_dict
|
40 |
|
41 |
model = TextEmbeddingModel(opt.model_name)
|
42 |
+
# state_dict = torch.load(opt.model_path, map_location=model.model.device)
|
43 |
+
# new_state_dict={}
|
44 |
+
# for key in state_dict.keys():
|
45 |
+
# if key.startswith('model.'):
|
46 |
+
# new_state_dict[key[6:]]=state_dict[key]
|
47 |
+
# model.load_state_dict(state_dict)
|
48 |
tokenizer=model.tokenizer
|
49 |
|
50 |
index = Indexer(opt.embedding_dim)
|