File size: 3,826 Bytes
b64accf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e955a8
 
 
 
 
 
 
 
 
 
 
b64accf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from os import path
import streamlit as st

# import pickle

# from tensorflow import keras
import tensorflow as tf
import torch
from torch import nn
from transformers import BertModel, BertTokenizer


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "bert-base-cased"
MODEL_PATH = path.join(path.dirname(__file__), "bert_model.h5")


# Build the Sentiment Classifier class
class SentimentClassifier(nn.Module):
    # Constructor class
    def __init__(self, n_classes):
        super(SentimentClassifier, self).__init__()
        self.bert = BertModel.from_pretrained(MODEL_NAME)
        self.drop = nn.Dropout(p=0.3)
        self.out = nn.Linear(self.bert.config.hidden_size, n_classes)

    # Forward propagaion class
    def forward(self, input_ids, attention_mask):
        _, pooled_output = self.bert(
            input_ids=input_ids, attention_mask=attention_mask, return_dict=False
        )
        #  Add a dropout layer
        output = self.drop(pooled_output)
        return self.out(output)


@st.cache_resource
def load_model_and_tokenizer():
    model = SentimentClassifier(3)
    model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device("cpu")))
    model.eval()
    return model, BertTokenizer.from_pretrained("bert-base-cased")


def predict(content):
    model, tokenizer = load_model_and_tokenizer()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    encoded_review = tokenizer.encode_plus(
        content,
        max_length=160,
        add_special_tokens=True,
        return_token_type_ids=False,
        pad_to_max_length=True,
        return_attention_mask=True,
        return_tensors="pt",
    )

    input_ids = encoded_review["input_ids"].to(device)
    attention_mask = encoded_review["attention_mask"].to(device)

    output = model(input_ids, attention_mask)
    _, prediction = torch.max(output, dim=1)

    class_names = ["negative", "neutral", "positive"]

    return class_names[prediction]


def main():
    st.set_page_config(page_title="Sentiment Analysis", page_icon="📝")

    st.title("Seminar Công nghệ Tri thức - Transformer trong NLP")
    st.markdown(
        """
        **Team members:**
        | Student ID | Full Name                |
        | ---------- | ------------------------ |
        | 19120600   | Bùi Nguyên Nghĩa         |
        | 19120607   | Phạm Thị Nguyệt          |
        """
    )
    
    # giving a title to our page
    st.title("Sentiment analysis")
    contents = st.text_area(
        "Please enter reviews/sentiment/setences/contents:",
        placeholder="Enter your text here",
        height=200,
    )

    prediction = ""

    # Create a prediction button
    if st.button("Analyze Sentiment"):
        stripped = contents.strip()
        if not stripped:
            st.error("Please enter some text.")
            return

        prediction = predict(contents)
        if prediction == "positive":
            st.success("This is positive 😄")
        elif prediction == "negative":
            st.error("This is negative 😟")
        else:
            st.warning("This is neutral 🙂")

    upload_file = st.file_uploader("Or upload a file", type=["txt"])
    if upload_file is not None:
        contents = upload_file.read().decode("utf-8")

        for line in contents.splitlines():
            line = line.strip()
            if not line:
                continue

            prediction = predict(line)
            if prediction == "positive":
                st.success(line + "\n\nThis is positive 😄")
            elif prediction == "negative":
                st.error(line + "\n\nThis is negative 😟")
            else:
                st.warning(line + "\n\nThis is neutral 🙂")


if __name__ == "__main__":
    main()