File size: 1,653 Bytes
05bfc25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st
from st_pages import Page, show_pages

st.set_page_config(page_title="Question Answering", page_icon="🏠")

show_pages(
    [
        Page("app.py", "Home", "🏠"),
        Page(
            "QuestionAnswering.py", "Question Answering", "📝"
        ),
    ]
)

st.title("Project in Text Mining and Application")
st.header("Question Answering use a pre-trained model - ELECTRA")
st.markdown(
    """

    **Team members:**

    | Student ID | Full Name                | Email                          |

    | ---------- | ------------------------ | ------------------------------ |

    | 1712603    | Lê Quang Nam             | [email protected]   |

    | 19120582   | Lê Nhựt Minh             | [email protected]  |

    | 19120600   | Bùi Nguyên Nghĩa         | [email protected]  |

    | 21120198   | Nguyễn Thị Lan Anh       | [email protected]  |

    """
)

st.header("The Need for Question Answering")
st.markdown(
    """

    ...

    """
)

st.header("Technology used")
st.markdown(
    """

    The ELECTRA model, specifically the "google/electra-small-discriminator" used here, 

    is a deep learning model in the field of natural language processing (NLP) developed 

    by Google. This model is an intelligent variation of the supervised learning model 

    based on the Transformer architecture, designed to understand and process natural language efficiently.

    For this Question Answering task, we choose two related classes: ElectraTokenizerFast and 

    TFElectraForQuestionAnswering to implement.

    """
)