ngxson's picture
ngxson HF staff
dynamic config
a605ca0
raw
history blame
7.55 kB
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
from urllib.parse import quote
print(os.system("""
cd front;
npm ci;
npm run build;
cd ..;
"""))
CHAR_LIMIT = 5000 # test
SPACE_ID = os.environ.get('SPACE_ID')
LLM_ENDPOINT = os.environ.get('LLM_ENDPOINT', 'null')
CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkΙ™ΙΉO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkΙ™ΙΉQ'
gr.set_static_paths(paths=["./front/dist"])
@spaces.GPU(duration=30)
def forward_gpu(ps, ref_s, speed):
return models[True](ps, ref_s, speed)
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Arena API
def predict(text, voice='af_heart', speed=1):
return generate_first(text, voice, speed, use_gpu=False)[0]
def tokenize_first(text, voice='af_heart'):
pipeline = pipelines[voice[0]]
for _, ps, _ in pipeline(text, voice):
return ps
return ''
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
first = True
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
yield 24000, audio.numpy()
if first:
first = False
yield 24000, torch.zeros(1).numpy()
CHOICES = {
'πŸ‡ΊπŸ‡Έ 🚺 Heart ❀️': 'af_heart',
'πŸ‡ΊπŸ‡Έ 🚺 Bella πŸ”₯': 'af_bella',
'πŸ‡ΊπŸ‡Έ 🚺 Nicole 🎧': 'af_nicole',
'πŸ‡ΊπŸ‡Έ 🚺 Aoede': 'af_aoede',
'πŸ‡ΊπŸ‡Έ 🚺 Kore': 'af_kore',
'πŸ‡ΊπŸ‡Έ 🚺 Sarah': 'af_sarah',
'πŸ‡ΊπŸ‡Έ 🚺 Nova': 'af_nova',
'πŸ‡ΊπŸ‡Έ 🚺 Sky': 'af_sky',
'πŸ‡ΊπŸ‡Έ 🚺 Alloy': 'af_alloy',
'πŸ‡ΊπŸ‡Έ 🚺 Jessica': 'af_jessica',
'πŸ‡ΊπŸ‡Έ 🚺 River': 'af_river',
'πŸ‡ΊπŸ‡Έ 🚹 Michael': 'am_michael',
'πŸ‡ΊπŸ‡Έ 🚹 Fenrir': 'am_fenrir',
'πŸ‡ΊπŸ‡Έ 🚹 Puck': 'am_puck',
'πŸ‡ΊπŸ‡Έ 🚹 Echo': 'am_echo',
'πŸ‡ΊπŸ‡Έ 🚹 Eric': 'am_eric',
'πŸ‡ΊπŸ‡Έ 🚹 Liam': 'am_liam',
'πŸ‡ΊπŸ‡Έ 🚹 Onyx': 'am_onyx',
'πŸ‡ΊπŸ‡Έ 🚹 Santa': 'am_santa',
'πŸ‡ΊπŸ‡Έ 🚹 Adam': 'am_adam',
'πŸ‡¬πŸ‡§ 🚺 Emma': 'bf_emma',
'πŸ‡¬πŸ‡§ 🚺 Isabella': 'bf_isabella',
'πŸ‡¬πŸ‡§ 🚺 Alice': 'bf_alice',
'πŸ‡¬πŸ‡§ 🚺 Lily': 'bf_lily',
'πŸ‡¬πŸ‡§ 🚹 George': 'bm_george',
'πŸ‡¬πŸ‡§ 🚹 Fable': 'bm_fable',
'πŸ‡¬πŸ‡§ 🚹 Lewis': 'bm_lewis',
'πŸ‡¬πŸ‡§ 🚹 Daniel': 'bm_daniel',
}
for v in CHOICES.values():
pipelines[v[0]].load_voice(v)
TOKEN_NOTE = '''
πŸ’‘ Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkΙ™ΙΉO/)`
πŸ’¬ To adjust intonation, try punctuation `;:,.!?—…"()β€œβ€` or stress `ˈ` and `ˌ`
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
'''
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
tokenize_btn = gr.Button('Tokenize', variant='secondary')
gr.Markdown(TOKEN_NOTE)
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
if CHAR_LIMIT is not None:
STREAM_NOTE.append(f'βœ‚οΈ Each stream is capped at {CHAR_LIMIT} characters.')
STREAM_NOTE.append('πŸš€ Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
with gr.Blocks() as stream_tab:
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
with gr.Row():
stream_btn = gr.Button('Stream', variant='primary')
stop_btn = gr.Button('Stop', variant='stop')
with gr.Accordion('Note', open=True):
gr.Markdown(STREAM_NOTE)
gr.DuplicateButton()
API_NAME = 'tts'
head = f'''
<script>
document.addEventListener('DOMContentLoaded', () => {{
console.log('DOM content loaded');
if (!localStorage.getItem('debug') && !window.location.href.match(/debug=1/)) {{
console.log('Attaching frontend app');
const frontendApp = document.createElement('iframe');
frontendApp.src = '/gradio_api/file=./front/dist/index.html?SPACE_ID={quote(SPACE_ID)}&LLM_ENDPOINT={quote(LLM_ENDPOINT)}';
frontendApp.style = 'position: fixed; top: 0; left: 0; width: 100%; height: 100%; border: none; z-index: 999999;';
document.body.appendChild(frontendApp);
}}
}});
</script>
'''
with gr.Blocks(head=head) as app:
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
with gr.Column():
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio, out_ps], api_name=API_NAME)
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed], outputs=[out_stream], api_name=API_NAME)
stop_btn.click(fn=None, cancels=stream_event)
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
if __name__ == '__main__':
app.queue(api_open=True).launch(show_api=True, ssr_mode=True)