|
import spaces |
|
from kokoro import KModel, KPipeline |
|
import gradio as gr |
|
import os |
|
import random |
|
import torch |
|
from urllib.parse import quote |
|
|
|
print(os.system(""" |
|
cd front; |
|
npm ci; |
|
npm run build; |
|
cd ..; |
|
""")) |
|
|
|
CHAR_LIMIT = 5000 |
|
|
|
SPACE_ID = os.environ.get('SPACE_ID') |
|
LLM_ENDPOINT = os.environ.get('LLM_ENDPOINT', 'null') |
|
|
|
CUDA_AVAILABLE = torch.cuda.is_available() |
|
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} |
|
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'} |
|
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kΛOkΙΙΉO' |
|
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kΛQkΙΙΉQ' |
|
|
|
gr.set_static_paths(paths=["./front/dist"]) |
|
|
|
@spaces.GPU(duration=30) |
|
def forward_gpu(ps, ref_s, speed): |
|
return models[True](ps, ref_s, speed) |
|
|
|
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): |
|
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] |
|
pipeline = pipelines[voice[0]] |
|
pack = pipeline.load_voice(voice) |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
for _, ps, _ in pipeline(text, voice, speed): |
|
ref_s = pack[len(ps)-1] |
|
try: |
|
if use_gpu: |
|
audio = forward_gpu(ps, ref_s, speed) |
|
else: |
|
audio = models[False](ps, ref_s, speed) |
|
except gr.exceptions.Error as e: |
|
if use_gpu: |
|
gr.Warning(str(e)) |
|
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') |
|
audio = models[False](ps, ref_s, speed) |
|
else: |
|
raise gr.Error(e) |
|
return (24000, audio.numpy()), ps |
|
return None, '' |
|
|
|
|
|
def predict(text, voice='af_heart', speed=1): |
|
return generate_first(text, voice, speed, use_gpu=False)[0] |
|
|
|
def tokenize_first(text, voice='af_heart'): |
|
pipeline = pipelines[voice[0]] |
|
for _, ps, _ in pipeline(text, voice): |
|
return ps |
|
return '' |
|
|
|
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): |
|
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] |
|
pipeline = pipelines[voice[0]] |
|
pack = pipeline.load_voice(voice) |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
first = True |
|
for _, ps, _ in pipeline(text, voice, speed): |
|
ref_s = pack[len(ps)-1] |
|
try: |
|
if use_gpu: |
|
audio = forward_gpu(ps, ref_s, speed) |
|
else: |
|
audio = models[False](ps, ref_s, speed) |
|
except gr.exceptions.Error as e: |
|
if use_gpu: |
|
gr.Warning(str(e)) |
|
gr.Info('Switching to CPU') |
|
audio = models[False](ps, ref_s, speed) |
|
else: |
|
raise gr.Error(e) |
|
yield 24000, audio.numpy() |
|
if first: |
|
first = False |
|
yield 24000, torch.zeros(1).numpy() |
|
|
|
CHOICES = { |
|
'πΊπΈ πΊ Heart β€οΈ': 'af_heart', |
|
'πΊπΈ πΊ Bella π₯': 'af_bella', |
|
'πΊπΈ πΊ Nicole π§': 'af_nicole', |
|
'πΊπΈ πΊ Aoede': 'af_aoede', |
|
'πΊπΈ πΊ Kore': 'af_kore', |
|
'πΊπΈ πΊ Sarah': 'af_sarah', |
|
'πΊπΈ πΊ Nova': 'af_nova', |
|
'πΊπΈ πΊ Sky': 'af_sky', |
|
'πΊπΈ πΊ Alloy': 'af_alloy', |
|
'πΊπΈ πΊ Jessica': 'af_jessica', |
|
'πΊπΈ πΊ River': 'af_river', |
|
'πΊπΈ πΉ Michael': 'am_michael', |
|
'πΊπΈ πΉ Fenrir': 'am_fenrir', |
|
'πΊπΈ πΉ Puck': 'am_puck', |
|
'πΊπΈ πΉ Echo': 'am_echo', |
|
'πΊπΈ πΉ Eric': 'am_eric', |
|
'πΊπΈ πΉ Liam': 'am_liam', |
|
'πΊπΈ πΉ Onyx': 'am_onyx', |
|
'πΊπΈ πΉ Santa': 'am_santa', |
|
'πΊπΈ πΉ Adam': 'am_adam', |
|
'π¬π§ πΊ Emma': 'bf_emma', |
|
'π¬π§ πΊ Isabella': 'bf_isabella', |
|
'π¬π§ πΊ Alice': 'bf_alice', |
|
'π¬π§ πΊ Lily': 'bf_lily', |
|
'π¬π§ πΉ George': 'bm_george', |
|
'π¬π§ πΉ Fable': 'bm_fable', |
|
'π¬π§ πΉ Lewis': 'bm_lewis', |
|
'π¬π§ πΉ Daniel': 'bm_daniel', |
|
} |
|
for v in CHOICES.values(): |
|
pipelines[v[0]].load_voice(v) |
|
|
|
TOKEN_NOTE = ''' |
|
π‘ Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kΛOkΙΙΉO/)` |
|
|
|
π¬ To adjust intonation, try punctuation `;:,.!?ββ¦"()ββ` or stress `Λ` and `Λ` |
|
|
|
β¬οΈ Lower stress `[1 level](-1)` or `[2 levels](-2)` |
|
|
|
β¬οΈ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words) |
|
''' |
|
|
|
with gr.Blocks() as generate_tab: |
|
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) |
|
generate_btn = gr.Button('Generate', variant='primary') |
|
with gr.Accordion('Output Tokens', open=True): |
|
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') |
|
tokenize_btn = gr.Button('Tokenize', variant='secondary') |
|
gr.Markdown(TOKEN_NOTE) |
|
predict_btn = gr.Button('Predict', variant='secondary', visible=False) |
|
|
|
STREAM_NOTE = ['β οΈ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.'] |
|
if CHAR_LIMIT is not None: |
|
STREAM_NOTE.append(f'βοΈ Each stream is capped at {CHAR_LIMIT} characters.') |
|
STREAM_NOTE.append('π Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:') |
|
STREAM_NOTE = '\n\n'.join(STREAM_NOTE) |
|
|
|
with gr.Blocks() as stream_tab: |
|
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True) |
|
with gr.Row(): |
|
stream_btn = gr.Button('Stream', variant='primary') |
|
stop_btn = gr.Button('Stop', variant='stop') |
|
with gr.Accordion('Note', open=True): |
|
gr.Markdown(STREAM_NOTE) |
|
gr.DuplicateButton() |
|
|
|
API_NAME = 'tts' |
|
|
|
|
|
head = f''' |
|
<script> |
|
document.addEventListener('DOMContentLoaded', () => {{ |
|
console.log('DOM content loaded'); |
|
if (!localStorage.getItem('debug') && !window.location.href.match(/debug=1/)) {{ |
|
console.log('Attaching frontend app'); |
|
const frontendApp = document.createElement('iframe'); |
|
frontendApp.src = '/gradio_api/file=./front/dist/index.html?SPACE_ID={quote(SPACE_ID)}&LLM_ENDPOINT={quote(LLM_ENDPOINT)}'; |
|
frontendApp.style = 'position: fixed; top: 0; left: 0; width: 100%; height: 100%; border: none; z-index: 999999;'; |
|
document.body.appendChild(frontendApp); |
|
}} |
|
}}); |
|
</script> |
|
''' |
|
|
|
with gr.Blocks(head=head) as app: |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'β' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") |
|
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') |
|
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') |
|
with gr.Column(): |
|
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream']) |
|
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio, out_ps], api_name=API_NAME) |
|
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) |
|
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed], outputs=[out_stream], api_name=API_NAME) |
|
stop_btn.click(fn=None, cancels=stream_event) |
|
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) |
|
|
|
if __name__ == '__main__': |
|
app.queue(api_open=True).launch(show_api=True, ssr_mode=True) |
|
|