Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +41 -1
tasks/text.py
CHANGED
@@ -7,9 +7,12 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"],
|
@@ -55,6 +58,43 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Make random predictions (placeholder for actual model inference)
|
60 |
true_labels = test_dataset["label"]
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
+
import json
|
12 |
+
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION = "Modified small RoBERTa checkpoint that focuses on emotions"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
@router.post(ROUTE, tags=["Text Task"],
|
|
|
58 |
# YOUR MODEL INFERENCE CODE HERE
|
59 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
60 |
#--------------------------------------------------------------------------------------------
|
61 |
+
|
62 |
+
|
63 |
+
repo_id = "nhankins/frugal_ai_submission"
|
64 |
+
|
65 |
+
|
66 |
+
llm_client = InferenceClient(
|
67 |
+
|
68 |
+
|
69 |
+
model=repo_id,
|
70 |
+
|
71 |
+
timeout=120,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def call_llm(inference_client: InferenceClient, prompt: str):
|
76 |
+
|
77 |
+
response = inference_client.post(
|
78 |
+
|
79 |
+
json={
|
80 |
+
|
81 |
+
"inputs": prompt,
|
82 |
+
|
83 |
+
"parameters": {"max_new_tokens": 200},
|
84 |
+
|
85 |
+
"task": "text-classification",
|
86 |
+
|
87 |
+
},
|
88 |
+
|
89 |
+
)
|
90 |
+
|
91 |
+
return json.loads(response.decode())[0]["generated_label"]
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
response=call_llm(llm_client, "climate disinformation here")
|
96 |
+
|
97 |
+
print (response)
|
98 |
|
99 |
# Make random predictions (placeholder for actual model inference)
|
100 |
true_labels = test_dataset["label"]
|