File size: 8,349 Bytes
063f4f5
174d358
45f18d1
 
 
ef63822
d764aaf
ef63822
 
 
174d358
8a01cdc
 
 
45f18d1
 
 
8a01cdc
 
 
 
ef63822
 
 
 
 
 
 
 
 
45f18d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a01cdc
 
 
ef63822
 
 
 
 
8a01cdc
 
 
 
 
 
 
45f18d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef63822
45f18d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef63822
 
 
 
 
 
 
 
 
 
 
 
9f35487
 
ef63822
 
 
45f18d1
 
ff36ed6
45f18d1
 
ff36ed6
45f18d1
 
 
8a01cdc
 
45f18d1
 
 
 
 
 
ef63822
 
 
 
 
 
 
 
 
 
 
 
ff36ed6
 
c9e7f8b
ff36ed6
45f18d1
 
ef63822
 
 
 
8a01cdc
45f18d1
 
8a01cdc
 
45f18d1
 
ef63822
 
 
 
 
 
9f35487
 
 
 
 
ef63822
9f35487
174d358
063f4f5
45f18d1
 
 
4bfc50c
8a01cdc
45f18d1
 
 
 
ef63822
 
45f18d1
 
 
 
ef63822
9f35487
 
 
45f18d1
 
ff36ed6
45f18d1
063f4f5
cfc47f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import gradio as gr
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *

def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
    # 0.106 strength = .50
    # 0.106 strength = 1
    rows, cols = image.shape[:2]
    max_dim = max(rows, cols)
    
    #Normalize the positions
    # Y Needs to be flipped
    center_y = int(center[1] * rows)
    center_x = int(center[0] * cols)

    # Inverts the Y axis (Numpy is 0 index at top of image)
    center_y = abs(rows - center_y)

    print()
    print(rows, cols)
    print("y =", center_y, "/", rows)
    print("x =", center_x, "/", cols)
    print()
    
    pixel_radius = int(max_dim * radius)
    
    y, x = np.ogrid[:rows, :cols]
    y = (y - center_y) / max_dim
    x = (x - center_x) / max_dim
    
    # Calculate distance from center
    dist_from_center = np.sqrt(x**2 + y**2)
    
    # Calculate function values
    z = func(x, y)
    
    # Calculate gradients
    gy, gx = np.gradient(z)

    # Creating a sigmoid function to apply to masks
    def sigmoid(x, center, steepness):
        return 1 / (1 + np.exp(-steepness * (x - center)))
    
    print(radius)
    print(strength)
    print(edge_smoothness)
    print(center_smoothness)

    # Masking
    edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)

    center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)

    mask = edge_mask * center_mask
    
    # Apply mask to gradients
    gx = gx * mask
    gy = gy * mask
    
    # Normalize gradient vectors
    magnitude = np.sqrt(gx**2 + gy**2)
    magnitude[magnitude == 0] = 1  # Avoid division by zero
    gx = gx / magnitude
    gy = gy / magnitude
    
    # Scale the effect (Play with the number 5)
    scale_factor = strength * np.log(max_dim) / 100  # Adjust strength based on image size
    gx = gx * scale_factor * mask
    gy = gy * scale_factor * mask
    
    # Create the mapping
    x_new = x + gx
    y_new = y + gy
    
    # Convert back to pixel coordinates
    x_new = x_new * max_dim + center_x
    y_new = y_new * max_dim + center_y
    
    # Ensure the new coordinates are within the image boundaries
    x_new = np.clip(x_new, 0, cols - 1)
    y_new = np.clip(y_new, 0, rows - 1)
    
    # Apply the transformation to each channel
    channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect') 
                for i in range(image.shape[2])]
    
    transformed_image = np.dstack(channels).astype(image.dtype)
    
    return transformed_image, (gx, gy)


def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
    """
    Create a gradient vector field visualization with option to reverse direction.
    
    :param gx: X-component of the gradient
    :param gy: Y-component of the gradient
    :param image_shape: Shape of the original image (height, width)
    :param step: Spacing between arrows
    :param reverse: If True, reverse the direction of the arrows
    :return: Gradient vector field as a numpy array (RGB image)
    """
    rows, cols = image_shape
    y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
    
    # Calculate the scale based on image size
    max_dim = max(rows, cols)
    scale = max_dim / 1000  # Adjusted for longer arrows
    
    # Reverse direction if specified
    direction = -1 if reverse else 1
    
    fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
    ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x], 
              scale=scale, 
              scale_units='width', 
              width=0.002 * max_dim / 500,
              headwidth=8, 
              headlength=12, 
              headaxislength=0, 
              color='black',
              minshaft=2,
              minlength=0,
              pivot='tail')
    ax.set_xlim(0, cols)
    ax.set_ylim(rows, 0)
    ax.set_aspect('equal')
    ax.axis('off')
    
    fig.tight_layout(pad=0)
    fig.canvas.draw()
    vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close(fig)
    
    return vector_field


#############################
#    MAIN FUNCTION HERE
#############################

# pipeline = pipeline(task="image-classification", model="nick-leland/distortionml")

# Version Check 
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")

learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')


def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
    I = np.asarray(Image.open(image))    

    def pinch(x, y):
        return x**2 + y**2

    def shift(x, y):
        return np.arctan2(y, x)

    def bulge(x, y):
        r = -np.sqrt(x**2 + y**2)
        return r 

    def spiral(x, y, frequency=1):
        r = np.sqrt(x**2 + y**2)
        theta = np.arctan2(y, x)
        return r * np.sin(theta - frequency * r)

    rng = np.random.default_rng()
    if randomization_check == True:
        radius, location, strength, edge_smoothness= definitions(rng)
        center_x = location[0]
        center_y = location[1]
            
    # Temporarily disabling and using these values.
    # edge_smoothness = 0.25 * strength
    # center_smoothness = 0.25 * strength
    edge_smoothness, center_smoothness = smooth(rng, strength)


    if func_choice == "Pinch":
        func = pinch
    elif func_choice == "Spiral":
        func = shift 
    elif func_choice == "Bulge":
        func = bulge
        edge_smoothness = 0
        center_smoothness = 0
    elif func_choice == "Volcano":
        func = bulge
    elif func_choice == "Shift Up":
        func = lambda x, y: spiral(x, y, frequency=spiral_frequency)


    transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
    vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)

    # GRADIO CHANGE HERE
    # predictions = pipeline(transformed) 

    # Have to convert to image first
    result = Image.fromarray(transformed)

    result_bias = str(learn_bias.predict(result))
    result_fresh = str(learn_fresh.predict(result))
    print("Results")
    print(result_bias)
    print(result_fresh)

    return transformed, result_bias, result_fresh, vector_field

demo = gr.Interface(
    fn=transform_image,
    inputs=[
        gr.Image(type="filepath"),
        gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"), 
        gr.Checkbox(label="Randomize inputs?"),
        gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
        gr.Slider(0, 1, value=0.5, label="Center X"),
        gr.Slider(0, 1, value=0.5, label="Center Y"),
        gr.Slider(0, 1, value=0.5, label="Strength"),
        # gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
        # gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
        # gr.Checkbox(label="Reverse Gradient Direction"),
    ],
    outputs=[
        gr.Image(label="Transformed Image"),
        # gr.Image(label="Result", num_top_classes=2)
        gr.Textbox(label='Result Bias'),
        gr.Textbox(label='Result Fresh'),
        gr.Image(label="Gradient Vector Field")
    ],
    title="Image Transformation Demo!",
    description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"
)

demo.launch(share=True)