Spaces:
Build error
Build error
File size: 8,349 Bytes
063f4f5 174d358 45f18d1 ef63822 d764aaf ef63822 174d358 8a01cdc 45f18d1 8a01cdc ef63822 45f18d1 8a01cdc ef63822 8a01cdc 45f18d1 ef63822 45f18d1 ef63822 9f35487 ef63822 45f18d1 ff36ed6 45f18d1 ff36ed6 45f18d1 8a01cdc 45f18d1 ef63822 ff36ed6 c9e7f8b ff36ed6 45f18d1 ef63822 8a01cdc 45f18d1 8a01cdc 45f18d1 ef63822 9f35487 ef63822 9f35487 174d358 063f4f5 45f18d1 4bfc50c 8a01cdc 45f18d1 ef63822 45f18d1 ef63822 9f35487 45f18d1 ff36ed6 45f18d1 063f4f5 cfc47f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import numpy as np
import gradio as gr
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
# 0.106 strength = .50
# 0.106 strength = 1
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
#Normalize the positions
# Y Needs to be flipped
center_y = int(center[1] * rows)
center_x = int(center[0] * cols)
# Inverts the Y axis (Numpy is 0 index at top of image)
center_y = abs(rows - center_y)
print()
print(rows, cols)
print("y =", center_y, "/", rows)
print("x =", center_x, "/", cols)
print()
pixel_radius = int(max_dim * radius)
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
# Calculate distance from center
dist_from_center = np.sqrt(x**2 + y**2)
# Calculate function values
z = func(x, y)
# Calculate gradients
gy, gx = np.gradient(z)
# Creating a sigmoid function to apply to masks
def sigmoid(x, center, steepness):
return 1 / (1 + np.exp(-steepness * (x - center)))
print(radius)
print(strength)
print(edge_smoothness)
print(center_smoothness)
# Masking
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
# Apply mask to gradients
gx = gx * mask
gy = gy * mask
# Normalize gradient vectors
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
# Scale the effect (Play with the number 5)
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
# Create the mapping
x_new = x + gx
y_new = y + gy
# Convert back to pixel coordinates
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
#############################
# MAIN FUNCTION HERE
#############################
# pipeline = pipeline(task="image-classification", model="nick-leland/distortionml")
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check == True:
radius, location, strength, edge_smoothness= definitions(rng)
center_x = location[0]
center_y = location[1]
# Temporarily disabling and using these values.
# edge_smoothness = 0.25 * strength
# center_smoothness = 0.25 * strength
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Spiral":
func = shift
elif func_choice == "Bulge":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
# GRADIO CHANGE HERE
# predictions = pipeline(transformed)
# Have to convert to image first
result = Image.fromarray(transformed)
result_bias = str(learn_bias.predict(result))
result_fresh = str(learn_fresh.predict(result))
print("Results")
print(result_bias)
print(result_fresh)
return transformed, result_bias, result_fresh, vector_field
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
outputs=[
gr.Image(label="Transformed Image"),
# gr.Image(label="Result", num_top_classes=2)
gr.Textbox(label='Result Bias'),
gr.Textbox(label='Result Fresh'),
gr.Image(label="Gradient Vector Field")
],
title="Image Transformation Demo!",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"
)
demo.launch(share=True)
|