Spaces:
Build error
Build error
File size: 10,467 Bytes
8093ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import numpy as np
import gradio as gr
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import YOLO
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
# 0.106 strength = .50
# 0.106 strength = 1
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
#Normalize the positions
# Y Needs to be flipped
center_y = int(center[1] * rows)
center_x = int(center[0] * cols)
# Inverts the Y axis (Numpy is 0 index at top of image)
center_y = abs(rows - center_y)
print()
print(rows, cols)
print("y =", center_y, "/", rows)
print("x =", center_x, "/", cols)
print()
pixel_radius = int(max_dim * radius)
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
# Calculate distance from center
dist_from_center = np.sqrt(x**2 + y**2)
# Calculate function values
z = func(x, y)
# Calculate gradients
gy, gx = np.gradient(z)
# Creating a sigmoid function to apply to masks
def sigmoid(x, center, steepness):
return 1 / (1 + np.exp(-steepness * (x - center)))
print(radius)
print(strength)
print(edge_smoothness)
print(center_smoothness)
# Masking
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
# Apply mask to gradients
gx = gx * mask
gy = gy * mask
# Normalize gradient vectors
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
# Scale the effect (Play with the number 5)
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
# Create the mapping
x_new = x + gx
y_new = y + gy
# Convert back to pixel coordinates
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
#############################
# MAIN FUNCTION HERE
#############################
# pipeline = pipeline(task="image-classification", model="nick-leland/distortionml")
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
# Loads the YOLO Model
model = YOLO("bulge_yolo_model.pt")
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def bulge_inverse(x, y, f=bulge, a=1, b=1, c=1, d=0, e=0):
t = np.arctan2(y, x)
term = ((f - e) / (-a))**2 - d
if term < 0:
return None, None
x = (1/np.sqrt(b)) * np.sqrt(term) * np.cos(t)
y = (1/np.sqrt(c)) * np.sqrt(term) * np.sin(t)
return x, y
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check == True:
radius, location, strength, edge_smoothness= definitions(rng)
center_x = location[0]
center_y = location[1]
# Temporarily disabling and using these values.
# edge_smoothness = 0.25 * strength
# center_smoothness = 0.25 * strength
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Spiral":
func = shift
elif func_choice == "Bulge":
func = bulge
func2 = bulge_inverse
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
# Original Image Transformation
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
reverted, (gx_inverse, gy_inverse) = apply_vector_field_transform(I, func2, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
vector_field_reverted = create_gradient_vector_field(gx_inverse, gy_inverse, I.shape[:2], reverse=reverse_gradient)
# GRADIO CHANGE HERE
# predictions = pipeline(transformed)
# Have to convert to image first
result = Image.fromarray(transformed)
categories = ['Distorted', 'Maze']
def clean_output(result_values):
pred, idx, probs = result_values[0], result_values[1], result_values[2]
return dict(zip(categories, map(float, probs)))
result_bias = learn_bias.predict(result)
result_fresh = learn_fresh.predict(result)
print("Results")
result_bias_final = clean_output(result_bias)
result_fresh_final = clean_output(result_fresh)
print("saving?")
result_localization = model.predict(transformed, save=True)
print(result_localization)
return transformed, result_bias_final, result_fresh_final, vector_field, vector_field_reverted
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
examples=[
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
],
outputs=[
gr.Image(label="Transformed Image"),
# gr.Image(label="Result", num_top_classes=2)
gr.Label(),
gr.Label(),
gr.Image(label="Gradient Vector Field"),
gr.Image(label="Gradient Vector Field Reverted")
],
title="Image Transformation Demo!",
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!"
)
demo.launch(share=True)
|