File size: 13,060 Bytes
063f4f5
b6fa050
174d358
45f18d1
b6fa050
45f18d1
ef63822
d764aaf
ef63822
 
 
b6fa050
174d358
8a01cdc
45f18d1
 
 
8a01cdc
 
ef63822
 
b6fa050
 
 
 
45f18d1
 
 
 
 
 
 
 
b6fa050
45f18d1
 
b6fa050
 
45f18d1
b6fa050
 
 
8a01cdc
 
 
 
45f18d1
 
 
 
 
 
 
 
 
b6fa050
45f18d1
 
 
b6fa050
 
 
 
45f18d1
 
 
 
 
 
 
 
 
b6fa050
 
 
45f18d1
b6fa050
 
45f18d1
b6fa050
 
 
 
 
 
 
 
 
 
 
 
 
ef63822
45f18d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6fa050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef63822
 
 
 
 
 
 
 
 
 
9f35487
 
ef63822
b6fa050
 
ef63822
 
45f18d1
 
ff36ed6
45f18d1
 
ff36ed6
45f18d1
 
 
8a01cdc
 
45f18d1
 
 
 
 
 
ef63822
b6fa050
 
 
 
 
ef63822
ff36ed6
 
c9e7f8b
ff36ed6
45f18d1
 
ef63822
 
 
 
8a01cdc
45f18d1
 
8a01cdc
b6fa050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f18d1
ef63822
 
d8805a9
 
 
b6fa050
d8805a9
 
 
 
 
 
ef63822
b6fa050
 
 
174d358
063f4f5
45f18d1
 
 
49c4ee5
8a01cdc
45f18d1
 
 
 
ef63822
 
45f18d1
 
d8805a9
 
 
 
 
 
45f18d1
 
d8805a9
 
b6fa050
 
 
45f18d1
 
d8805a9
 
45f18d1
063f4f5
cfc47f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import numpy as np
import traceback
import gradio as gr
from PIL import Image
from scipy import ndimage, interpolate
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import YOLO

def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
    rows, cols = image.shape[:2]
    max_dim = max(rows, cols)
    
    center_y = int(center[1] * rows)
    center_x = int(center[0] * cols)
    center_y = abs(rows - center_y)

    print(f"Image shape: {rows}x{cols}")
    print(f"Center: ({center_x}, {center_y})")
    print(f"Radius: {radius}, Strength: {strength}")
    print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
    
    y, x = np.ogrid[:rows, :cols]
    y = (y - center_y) / max_dim
    x = (x - center_x) / max_dim
    
    dist_from_center = np.sqrt(x**2 + y**2)
    
    z = func(x, y)
    print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
    
    gy, gx = np.gradient(z)
    print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
    print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")

    # Avoid division by zero
    edge_smoothness = np.maximum(edge_smoothness, 1e-6)
    center_smoothness = np.maximum(center_smoothness, 1e-6)

    edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
    center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
    mask = edge_mask * center_mask
    
    gx = gx * mask
    gy = gy * mask
    
    magnitude = np.sqrt(gx**2 + gy**2)
    magnitude[magnitude == 0] = 1  # Avoid division by zero
    gx = gx / magnitude
    gy = gy / magnitude
    
    scale_factor = strength * np.log(max_dim) / 100
    gx = gx * scale_factor * mask
    gy = gy * scale_factor * mask
    
    print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
    print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
    
    # Forward transformation
    x_new = x + gx
    y_new = y + gy
    
    x_new = x_new * max_dim + center_x
    y_new = y_new * max_dim + center_y
    
    x_new = np.clip(x_new, 0, cols - 1)
    y_new = np.clip(y_new, 0, rows - 1)
    
    # Inverse transformation
    x_inv = x - gx
    y_inv = y - gy
    
    x_inv = x_inv * max_dim + center_x
    y_inv = y_inv * max_dim + center_y
    
    x_inv = np.clip(x_inv, 0, cols - 1)
    y_inv = np.clip(y_inv, 0, rows - 1)
    
    # Apply transformations
    channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect') 
                        for i in range(image.shape[2])]
    channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect') 
                        for i in range(image.shape[2])]
    
    transformed_image = np.dstack(channels_forward).astype(image.dtype)
    inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
    
    return transformed_image, inverse_transformed_image, (gx, gy)

def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
    """
    Create a gradient vector field visualization with option to reverse direction.
    
    :param gx: X-component of the gradient
    :param gy: Y-component of the gradient
    :param image_shape: Shape of the original image (height, width)
    :param step: Spacing between arrows
    :param reverse: If True, reverse the direction of the arrows
    :return: Gradient vector field as a numpy array (RGB image)
    """
    rows, cols = image_shape
    y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
    
    # Calculate the scale based on image size
    max_dim = max(rows, cols)
    scale = max_dim / 1000  # Adjusted for longer arrows
    
    # Reverse direction if specified
    direction = -1 if reverse else 1
    
    fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
    ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x], 
              scale=scale, 
              scale_units='width', 
              width=0.002 * max_dim / 500,
              headwidth=8, 
              headlength=12, 
              headaxislength=0, 
              color='black',
              minshaft=2,
              minlength=0,
              pivot='tail')
    ax.set_xlim(0, cols)
    ax.set_ylim(rows, 0)
    ax.set_aspect('equal')
    ax.axis('off')
    
    fig.tight_layout(pad=0)
    fig.canvas.draw()
    vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close(fig)
    
    return vector_field

import numpy as np
from scipy import interpolate

# def invert_gradient_vector_field(gx, gy, image_shape):
#     """
#     Invert the gradient vector field using a more accurate method.
#     
#     :param gx: X-component of the gradient
#     :param gy: Y-component of the gradient
#     :param image_shape: Shape of the original image (height, width)
#     :return: Inverted gx and gy
#     """
#     rows, cols = image_shape
#     y, x = np.mgrid[0:rows, 0:cols]
#     
#     # Calculate the new positions after applying the gradient
#     new_x = x + gx
#     new_y = y + gy
#     
#     # Create a mask for valid (non-NaN, non-infinite) values
#     mask = np.isfinite(new_x) & np.isfinite(new_y)
#     
#     # Flatten and filter the arrays
#     x_flat = x[mask]
#     y_flat = y[mask]
#     new_x_flat = new_x[mask]
#     new_y_flat = new_y[mask]
#     
#     # Create the inverse mapping
#     inv_x = interpolate.griddata((new_x_flat, new_y_flat), x_flat, (x, y), method='linear', fill_value=np.nan)
#     inv_y = interpolate.griddata((new_x_flat, new_y_flat), y_flat, (x, y), method='linear', fill_value=np.nan)
#     
#     # Calculate the inverse gradient
#     inv_gx = inv_x - x
#     inv_gy = inv_y - y
#     
#     # Fill NaN values with zeros
#     inv_gx = np.nan_to_num(inv_gx)
#     inv_gy = np.nan_to_num(inv_gy)
#     
#     return -inv_gx, -inv_gy  # Note the negation here

def apply_gradient_transform(image, gx, gy):
    """
    Apply the gradient transformation to an image.
    
    :param image: Input image as a numpy array
    :param gx: X-component of the gradient
    :param gy: Y-component of the gradient
    :return: Transformed image
    """
    rows, cols = image.shape[:2]
    y, x = np.mgrid[0:rows, 0:cols]
    
    # Apply the transformation
    x_new = x + gx
    y_new = y + gy
    
    # Ensure the new coordinates are within the image boundaries
    x_new = np.clip(x_new, 0, cols - 1)
    y_new = np.clip(y_new, 0, rows - 1)
    
    # Apply the transformation to each channel
    channels = []
    for i in range(image.shape[2]):
        channel = image[:,:,i]
        transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
        channels.append(transformed_channel)
    
    transformed_image = np.dstack(channels).astype(image.dtype)
    
    return transformed_image

#############################
#    MAIN FUNCTION HERE
#############################

# Version Check 
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")

learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')

# Loads the YOLO Model
model = YOLO("bulge_yolo_model.pt")

def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
    I = np.asarray(Image.open(image))    

    def pinch(x, y):
        return x**2 + y**2

    def shift(x, y):
        return np.arctan2(y, x)

    def bulge(x, y):
        r = -np.sqrt(x**2 + y**2)
        return r 

    def spiral(x, y, frequency=1):
        r = np.sqrt(x**2 + y**2)
        theta = np.arctan2(y, x)
        return r * np.sin(theta - frequency * r)

    rng = np.random.default_rng()
    if randomization_check:
        radius, location, strength, edge_smoothness = definitions(rng)
        center_x, center_y = location
    else:
        edge_smoothness, center_smoothness = smooth(rng, strength)

    if func_choice == "Pinch":
        func = pinch
    elif func_choice == "Spiral":
        func = shift 
    elif func_choice == "Bulge":
        func = bulge
        edge_smoothness = 0
        center_smoothness = 0
    elif func_choice == "Volcano":
        func = bulge
    elif func_choice == "Shift Up":
        func = lambda x, y: spiral(x, y, frequency=spiral_frequency)


    print(f"Function choice: {func_choice}")
    print(f"Input image shape: {I.shape}")

    try:
        transformed, inverse_transformed, (gx, gy) = apply_vector_field_transform(
            I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness
        )
        print(f"Transformed image shape: {transformed.shape}")
        print(f"Inverse transformed image shape: {inverse_transformed.shape}")
        print(f"Gradient shapes: gx {gx.shape}, gy {gy.shape}")
        print(f"Gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
        
        vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
        inverted_vector_field = create_gradient_vector_field(-gx, -gy, I.shape[:2], reverse=False)
        
        print(f"Vector field shape: {vector_field.shape}")
        print(f"Inverted vector field shape: {inverted_vector_field.shape}")
    except Exception as e:
        print(f"Error in transformation: {str(e)}")
        traceback.print_exc()
        transformed = np.zeros_like(I)
        inverse_transformed = np.zeros_like(I)
        vector_field = np.zeros_like(I)
        inverted_vector_field = np.zeros_like(I)

    result = Image.fromarray(transformed)

    categories = ['Distorted', 'Maze']

    def clean_output(result_values):
        pred, idx, probs = result_values
        return dict(zip(categories, map(float, probs)))

    result_bias = learn_bias.predict(result)
    result_fresh = learn_fresh.predict(result)
    result_bias_final = clean_output(result_bias)
    result_fresh_final = clean_output(result_fresh)

    result_localization = model.predict(transformed, save=True)

    return transformed, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field

demo = gr.Interface(
    fn=transform_image,
    inputs=[
        gr.Image(type="filepath"),
        gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"), 
        gr.Checkbox(label="Randomize inputs?"),
        gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
        gr.Slider(0, 1, value=0.5, label="Center X"),
        gr.Slider(0, 1, value=0.5, label="Center Y"),
        gr.Slider(0, 1, value=0.5, label="Strength"),
        # gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
        # gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
        # gr.Checkbox(label="Reverse Gradient Direction"),
    ],
    examples=[
        [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
        [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
        [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
        [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
    ],
    outputs=[
        gr.Image(label="Transformed Image"),
        gr.Label(),
        gr.Label(),
        gr.Image(label="Gradient Vector Field"),
        gr.Image(label="Inverse Gradient"),
        gr.Image(label="Inverted Vector Field"),
    ],
    title="Image Transformation Demo!",
    article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
    description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!"
)

demo.launch(share=True)