Spaces:
Build error
Build error
File size: 13,060 Bytes
063f4f5 b6fa050 174d358 45f18d1 b6fa050 45f18d1 ef63822 d764aaf ef63822 b6fa050 174d358 8a01cdc 45f18d1 8a01cdc ef63822 b6fa050 45f18d1 b6fa050 45f18d1 b6fa050 45f18d1 b6fa050 8a01cdc 45f18d1 b6fa050 45f18d1 b6fa050 45f18d1 b6fa050 45f18d1 b6fa050 45f18d1 b6fa050 ef63822 45f18d1 b6fa050 ef63822 9f35487 ef63822 b6fa050 ef63822 45f18d1 ff36ed6 45f18d1 ff36ed6 45f18d1 8a01cdc 45f18d1 ef63822 b6fa050 ef63822 ff36ed6 c9e7f8b ff36ed6 45f18d1 ef63822 8a01cdc 45f18d1 8a01cdc b6fa050 45f18d1 ef63822 d8805a9 b6fa050 d8805a9 ef63822 b6fa050 174d358 063f4f5 45f18d1 49c4ee5 8a01cdc 45f18d1 ef63822 45f18d1 d8805a9 45f18d1 d8805a9 b6fa050 45f18d1 d8805a9 45f18d1 063f4f5 cfc47f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import numpy as np
import traceback
import gradio as gr
from PIL import Image
from scipy import ndimage, interpolate
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import YOLO
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
center_y = int(center[1] * rows)
center_x = int(center[0] * cols)
center_y = abs(rows - center_y)
print(f"Image shape: {rows}x{cols}")
print(f"Center: ({center_x}, {center_y})")
print(f"Radius: {radius}, Strength: {strength}")
print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
dist_from_center = np.sqrt(x**2 + y**2)
z = func(x, y)
print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
gy, gx = np.gradient(z)
print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
# Avoid division by zero
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
center_smoothness = np.maximum(center_smoothness, 1e-6)
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
gx = gx * mask
gy = gy * mask
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
scale_factor = strength * np.log(max_dim) / 100
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
# Forward transformation
x_new = x + gx
y_new = y + gy
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Inverse transformation
x_inv = x - gx
y_inv = y - gy
x_inv = x_inv * max_dim + center_x
y_inv = y_inv * max_dim + center_y
x_inv = np.clip(x_inv, 0, cols - 1)
y_inv = np.clip(y_inv, 0, rows - 1)
# Apply transformations
channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels_forward).astype(image.dtype)
inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
return transformed_image, inverse_transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
import numpy as np
from scipy import interpolate
# def invert_gradient_vector_field(gx, gy, image_shape):
# """
# Invert the gradient vector field using a more accurate method.
#
# :param gx: X-component of the gradient
# :param gy: Y-component of the gradient
# :param image_shape: Shape of the original image (height, width)
# :return: Inverted gx and gy
# """
# rows, cols = image_shape
# y, x = np.mgrid[0:rows, 0:cols]
#
# # Calculate the new positions after applying the gradient
# new_x = x + gx
# new_y = y + gy
#
# # Create a mask for valid (non-NaN, non-infinite) values
# mask = np.isfinite(new_x) & np.isfinite(new_y)
#
# # Flatten and filter the arrays
# x_flat = x[mask]
# y_flat = y[mask]
# new_x_flat = new_x[mask]
# new_y_flat = new_y[mask]
#
# # Create the inverse mapping
# inv_x = interpolate.griddata((new_x_flat, new_y_flat), x_flat, (x, y), method='linear', fill_value=np.nan)
# inv_y = interpolate.griddata((new_x_flat, new_y_flat), y_flat, (x, y), method='linear', fill_value=np.nan)
#
# # Calculate the inverse gradient
# inv_gx = inv_x - x
# inv_gy = inv_y - y
#
# # Fill NaN values with zeros
# inv_gx = np.nan_to_num(inv_gx)
# inv_gy = np.nan_to_num(inv_gy)
#
# return -inv_gx, -inv_gy # Note the negation here
def apply_gradient_transform(image, gx, gy):
"""
Apply the gradient transformation to an image.
:param image: Input image as a numpy array
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:return: Transformed image
"""
rows, cols = image.shape[:2]
y, x = np.mgrid[0:rows, 0:cols]
# Apply the transformation
x_new = x + gx
y_new = y + gy
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = []
for i in range(image.shape[2]):
channel = image[:,:,i]
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
channels.append(transformed_channel)
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image
#############################
# MAIN FUNCTION HERE
#############################
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
# Loads the YOLO Model
model = YOLO("bulge_yolo_model.pt")
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check:
radius, location, strength, edge_smoothness = definitions(rng)
center_x, center_y = location
else:
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Spiral":
func = shift
elif func_choice == "Bulge":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
print(f"Function choice: {func_choice}")
print(f"Input image shape: {I.shape}")
try:
transformed, inverse_transformed, (gx, gy) = apply_vector_field_transform(
I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness
)
print(f"Transformed image shape: {transformed.shape}")
print(f"Inverse transformed image shape: {inverse_transformed.shape}")
print(f"Gradient shapes: gx {gx.shape}, gy {gy.shape}")
print(f"Gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
inverted_vector_field = create_gradient_vector_field(-gx, -gy, I.shape[:2], reverse=False)
print(f"Vector field shape: {vector_field.shape}")
print(f"Inverted vector field shape: {inverted_vector_field.shape}")
except Exception as e:
print(f"Error in transformation: {str(e)}")
traceback.print_exc()
transformed = np.zeros_like(I)
inverse_transformed = np.zeros_like(I)
vector_field = np.zeros_like(I)
inverted_vector_field = np.zeros_like(I)
result = Image.fromarray(transformed)
categories = ['Distorted', 'Maze']
def clean_output(result_values):
pred, idx, probs = result_values
return dict(zip(categories, map(float, probs)))
result_bias = learn_bias.predict(result)
result_fresh = learn_fresh.predict(result)
result_bias_final = clean_output(result_bias)
result_fresh_final = clean_output(result_fresh)
result_localization = model.predict(transformed, save=True)
return transformed, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
examples=[
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Label(),
gr.Label(),
gr.Image(label="Gradient Vector Field"),
gr.Image(label="Inverse Gradient"),
gr.Image(label="Inverted Vector Field"),
],
title="Image Transformation Demo!",
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!"
)
demo.launch(share=True)
|