Spaces:
Build error
Build error
File size: 6,649 Bytes
063f4f5 174d358 45f18d1 174d358 45f18d1 ff36ed6 45f18d1 ff36ed6 45f18d1 ff36ed6 45f18d1 174d358 063f4f5 45f18d1 ff36ed6 45f18d1 ff36ed6 45f18d1 063f4f5 cfc47f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import numpy as np
import gradio as gr
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1):
"""
Apply a vector field transformation to an image based on a given multivariate function.
:param image: Input image as a numpy array (height, width, channels)
:param func: A function that takes x and y as inputs and returns a scalar
:param radius: Radius of the effect as a fraction of the image size
:param center: Tuple (y, x) for the center of the effect, normalized to [0, 1]
:param strength: Strength of the effect, scaled to image size
:param edge_smoothness: Width of the smooth transition at the edge, as a fraction of the radius
:return: Tuple of (transformed image as a numpy array, gradient vectors for vector field)
"""
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
# Convert normalized center to pixel coordinates
center_y = int(center[0] * rows)
center_x = int(center[1] * cols)
# Convert normalized radius to pixel radius
pixel_radius = int(max_dim * radius)
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
# Calculate distance from center
dist_from_center = np.sqrt(x**2 + y**2)
# Calculate function values
z = func(x, y)
# Calculate gradients
gy, gx = np.gradient(z)
# Create smooth transition mask
mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
# Apply mask to gradients
gx = gx * mask
gy = gy * mask
# Normalize gradient vectors
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
# Scale the effect (Play with the number 5)
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
# Create the mapping
x_new = x + gx
y_new = y + gy
# Convert back to pixel coordinates
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
def transform_image(image, func_choice, radius, center_x, center_y, strength, edge_smoothness, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = np.sqrt(x**2 + y**2)
return -1 / (r + 1)
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Shift":
func = shift
elif func_choice == "Bulge":
func = bulge
elif func_choice == "Spiral":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_y, center_x), strength, edge_smoothness)
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
return transformed, vector_field
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift", "Bulge"], value="Bulge", label="Function"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
gr.Slider(0, 1, value=0.5, label="Edge Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Image(label="Gradient Vector Field")
],
title="Image Transformation Demo!",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"
)
demo.launch(share=True)
|