Spaces:
Build error
Build error
import numpy as np | |
import traceback | |
import gradio as gr | |
from PIL import Image | |
from scipy import ndimage, interpolate | |
import matplotlib.pyplot as plt | |
from bulk_bulge_generation import definitions, smooth | |
# from transformers import pipeline | |
import fastai | |
from fastcore.all import * | |
from fastai.vision.all import * | |
from ultralytics import YOLO | |
import cv2 | |
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20): | |
rows, cols = image.shape[:2] | |
max_dim = max(rows, cols) | |
print() | |
print(f"Max_dim is {max_dim}") | |
print() | |
center_y = int(center[1] * rows) | |
center_x = int(center[0] * cols) | |
center_y = abs(rows - center_y) | |
print(f"Image shape: {rows}x{cols}") | |
print(f"Center: ({center_x}, {center_y})") | |
print(f"Radius: {radius}, Strength: {strength}") | |
print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}") | |
y, x = np.ogrid[:rows, :cols] | |
y = (y - center_y) / max_dim | |
x = (x - center_x) / max_dim | |
dist_from_center = np.sqrt(x**2 + y**2) | |
z = func(x, y) | |
print(f"Function output - min: {np.min(z)}, max: {np.max(z)}") | |
gy, gx = np.gradient(z) | |
print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}") | |
print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}") | |
# Avoid division by zero | |
edge_smoothness = np.maximum(edge_smoothness, 1e-6) | |
center_smoothness = np.maximum(center_smoothness, 1e-6) | |
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1) | |
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1) | |
mask = edge_mask * center_mask | |
gx = gx * mask | |
gy = gy * mask | |
magnitude = np.sqrt(gx**2 + gy**2) | |
magnitude[magnitude == 0] = 1 # Avoid division by zero | |
gx = gx / magnitude | |
gy = gy / magnitude | |
scale_factor = strength * np.log(max_dim) / 100 | |
gx = gx * scale_factor * mask | |
gy = gy * scale_factor * mask | |
print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}") | |
print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}") | |
# Forward transformation | |
x_new = x + gx | |
y_new = y + gy | |
x_new = x_new * max_dim + center_x | |
y_new = y_new * max_dim + center_y | |
x_new = np.clip(x_new, 0, cols - 1) | |
y_new = np.clip(y_new, 0, rows - 1) | |
# Inverse transformation | |
x_inv = x - gx | |
y_inv = y - gy | |
x_inv = x_inv * max_dim + center_x | |
y_inv = y_inv * max_dim + center_y | |
x_inv = np.clip(x_inv, 0, cols - 1) | |
y_inv = np.clip(y_inv, 0, rows - 1) | |
# Apply transformations | |
channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect') | |
for i in range(image.shape[2])] | |
channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect') | |
for i in range(image.shape[2])] | |
transformed_image = np.dstack(channels_forward).astype(image.dtype) | |
inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype) | |
return transformed_image, inverse_transformed_image, (gx, gy) | |
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False): | |
""" | |
Create a gradient vector field visualization with option to reverse direction. | |
:param gx: X-component of the gradient | |
:param gy: Y-component of the gradient | |
:param image_shape: Shape of the original image (height, width) | |
:param step: Spacing between arrows | |
:param reverse: If True, reverse the direction of the arrows | |
:return: Gradient vector field as a numpy array (RGB image) | |
""" | |
rows, cols = image_shape | |
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int) | |
# Calculate the scale based on image size | |
max_dim = max(rows, cols) | |
scale = max_dim / 1000 # Adjusted for longer arrows | |
# Reverse direction if specified | |
direction = -1 if reverse else 1 | |
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100) | |
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x], | |
scale=scale, | |
scale_units='width', | |
width=0.002 * max_dim / 500, | |
headwidth=8, | |
headlength=12, | |
headaxislength=0, | |
color='black', | |
minshaft=2, | |
minlength=0, | |
pivot='tail') | |
ax.set_xlim(0, cols) | |
ax.set_ylim(rows, 0) | |
ax.set_aspect('equal') | |
ax.axis('off') | |
fig.tight_layout(pad=0) | |
fig.canvas.draw() | |
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close(fig) | |
return vector_field | |
# def invert_gradient_vector_field(gx, gy, image_shape): | |
# """ | |
# Invert the gradient vector field using a more accurate method. | |
# | |
# :param gx: X-component of the gradient | |
# :param gy: Y-component of the gradient | |
# :param image_shape: Shape of the original image (height, width) | |
# :return: Inverted gx and gy | |
# """ | |
# rows, cols = image_shape | |
# y, x = np.mgrid[0:rows, 0:cols] | |
# | |
# # Calculate the new positions after applying the gradient | |
# new_x = x + gx | |
# new_y = y + gy | |
# | |
# # Create a mask for valid (non-NaN, non-infinite) values | |
# mask = np.isfinite(new_x) & np.isfinite(new_y) | |
# | |
# # Flatten and filter the arrays | |
# x_flat = x[mask] | |
# y_flat = y[mask] | |
# new_x_flat = new_x[mask] | |
# new_y_flat = new_y[mask] | |
# | |
# # Create the inverse mapping | |
# inv_x = interpolate.griddata((new_x_flat, new_y_flat), x_flat, (x, y), method='linear', fill_value=np.nan) | |
# inv_y = interpolate.griddata((new_x_flat, new_y_flat), y_flat, (x, y), method='linear', fill_value=np.nan) | |
# | |
# # Calculate the inverse gradient | |
# inv_gx = inv_x - x | |
# inv_gy = inv_y - y | |
# | |
# # Fill NaN values with zeros | |
# inv_gx = np.nan_to_num(inv_gx) | |
# inv_gy = np.nan_to_num(inv_gy) | |
# | |
# return -inv_gx, -inv_gy # Note the negation here | |
def apply_gradient_transform(image, gx, gy): | |
""" | |
Apply the gradient transformation to an image. | |
:param image: Input image as a numpy array | |
:param gx: X-component of the gradient | |
:param gy: Y-component of the gradient | |
:return: Transformed image | |
""" | |
rows, cols = image.shape[:2] | |
y, x = np.mgrid[0:rows, 0:cols] | |
# Apply the transformation | |
x_new = x + gx | |
y_new = y + gy | |
# Ensure the new coordinates are within the image boundaries | |
x_new = np.clip(x_new, 0, cols - 1) | |
y_new = np.clip(y_new, 0, rows - 1) | |
# Apply the transformation to each channel | |
channels = [] | |
for i in range(image.shape[2]): | |
channel = image[:,:,i] | |
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0) | |
channels.append(transformed_channel) | |
transformed_image = np.dstack(channels).astype(image.dtype) | |
return transformed_image | |
def generate_function_gradient(func, image_shape, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20): | |
rows, cols = image_shape[:2] | |
max_dim = max(rows, cols) | |
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32) | |
y = (y - center[1] * rows) / max_dim | |
x = (x - center[0] * cols) / max_dim | |
dist_from_center = np.sqrt(x**2 + y**2) | |
z = func(x, y) | |
gy, gx = np.gradient(z) | |
edge_smoothness = np.maximum(edge_smoothness, 1e-6) | |
center_smoothness = np.maximum(center_smoothness, 1e-6) | |
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1) | |
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1) | |
mask = edge_mask * center_mask | |
gx *= mask | |
gy *= mask | |
magnitude = np.sqrt(gx**2 + gy**2) | |
max_magnitude = np.max(magnitude) | |
if max_magnitude > 0: | |
gx /= max_magnitude | |
gy /= max_magnitude | |
# Increase the base scale factor | |
base_scale = radius * max_dim * 0.2 # Increased from 0.1 to 0.2 | |
# Apply a non-linear scaling to the strength | |
adjusted_strength = np.power(strength, 1.5) # This will make the effect more pronounced at higher strengths | |
# Increase the maximum strength multiplier | |
scale_factor = base_scale * np.clip(adjusted_strength, 0, 3) # Increased max from 2 to 3 | |
# Apply an additional scaling factor based on image size | |
size_factor = np.log(max_dim) / np.log(1000) # This will be 1 for 1000x1000 images, larger for bigger images | |
scale_factor *= size_factor | |
gx *= scale_factor | |
gy *= scale_factor | |
print(f"Final scale factor: {scale_factor}") | |
print(f"Final gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]") | |
return gx, gy | |
############################# | |
# MAIN FUNCTION HERE | |
############################# | |
# Version Check | |
print(f"NumPy version: {np.__version__}") | |
print(f"PyTorch version: {torch.__version__}") | |
print(f"FastAI version: {fastai.__version__}") | |
learn_bias = load_learner('model_bias.pkl') | |
learn_fresh = load_learner('model_fresh.pkl') | |
# Loads the YOLO Model | |
model = YOLO("bulge_yolo_model.pt") | |
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1): | |
I = np.asarray(Image.open(image)) | |
# Downsample large images | |
max_size = 1024 # Increased from 512 to allow for more detail | |
if max(I.shape[:2]) > max_size: | |
scale = max_size / max(I.shape[:2]) | |
new_size = (int(I.shape[1] * scale), int(I.shape[0] * scale)) | |
I = cv2.resize(I, new_size, interpolation=cv2.INTER_AREA) | |
print(f"Downsampled image to {I.shape}") | |
################################## | |
# Transformation Functions # | |
################################## | |
def pinch(x, y): | |
r = np.sqrt(x**2 + y**2) | |
return r | |
def zoom(x, y): | |
return x**2 + y**2 | |
def shift(x, y): | |
return np.arctan2(y, x) | |
def bulge(x, y): | |
r = -np.sqrt(x**2 + y**2) | |
return r | |
def spiral(x, y, frequency=1): | |
r = np.sqrt(x**2 + y**2) | |
theta = np.arctan2(y, x) | |
return r * np.sin(theta - frequency * r) | |
rng = np.random.default_rng() | |
if randomization_check: | |
radius, location, strength, edge_smoothness = definitions(rng) | |
center_x, center_y = location | |
center_smoothness = edge_smoothness | |
else: | |
edge_smoothness, center_smoothness = smooth(rng, strength) | |
if func_choice == "Pinch": | |
func = pinch | |
edge_smoothness = 0 | |
center_smoothness = 0 | |
elif func_choice == "Spiral": | |
func = shift | |
edge_smoothness = 0 | |
center_smoothness = 0 | |
elif func_choice == "Bulge": | |
func = bulge | |
edge_smoothness = 0 | |
center_smoothness = 0 | |
elif func_choice == "Volcano": | |
func = bulge | |
edge_smoothness = 0 | |
center_smoothness = 0 | |
elif func_choice == "Shift Up": | |
func = lambda x, y: spiral(x, y, frequency=spiral_frequency) | |
edge_smoothness = 0 | |
center_smoothness = 0 | |
print(f"Function choice: {func_choice}") | |
print(f"Input image shape: {I.shape}") | |
print(f"Radius: {radius}, Center: ({center_x}, {center_y}), Strength: {strength}") | |
# strength = strength * 2 # This allows for stronger effects | |
try: | |
# Generate gradients | |
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness) | |
# Vectorized transformation | |
rows, cols = I.shape[:2] | |
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32) | |
x_new = x + gx | |
y_new = y + gy | |
x_new = np.clip(x_new, 0, cols - 1) | |
y_new = np.clip(y_new, 0, rows - 1) | |
transformed = cv2.remap(I, x_new, y_new, cv2.INTER_LINEAR) | |
inv_gx, inv_gy = -gx, -gy | |
x_inv = x + inv_gx | |
y_inv = y + inv_gy | |
x_inv = np.clip(x_inv, 0, cols - 1) | |
y_inv = np.clip(y_inv, 0, rows - 1) | |
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR) | |
print(f"Transformed image shape: {transformed.shape}") | |
print(f"Inverse transformed image shape: {inverse_transformed.shape}") | |
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient) | |
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False) | |
print(f"Vector field shape: {vector_field.shape}") | |
print(f"Inverted vector field shape: {inverted_vector_field.shape}") | |
# If we downsampled earlier, upsample the results back to original size | |
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]): | |
original_size = np.asarray(Image.open(image)).shape[:2][::-1] | |
transformed = cv2.resize(transformed, original_size, interpolation=cv2.INTER_LINEAR) | |
inverse_transformed = cv2.resize(inverse_transformed, original_size, interpolation=cv2.INTER_LINEAR) | |
vector_field = cv2.resize(vector_field, original_size, interpolation=cv2.INTER_LINEAR) | |
inverted_vector_field = cv2.resize(inverted_vector_field, original_size, interpolation=cv2.INTER_LINEAR) | |
except Exception as e: | |
print(f"Error in transformation: {str(e)}") | |
traceback.print_exc() | |
transformed = np.zeros_like(I) | |
inverse_transformed = np.zeros_like(I) | |
vector_field = np.zeros_like(I) | |
inverted_vector_field = np.zeros_like(I) | |
result = Image.fromarray(transformed) | |
categories = ['Distorted', 'Maze'] | |
def clean_output(result_values): | |
pred, idx, probs = result_values | |
return dict(zip(categories, map(float, probs))) | |
result_bias = learn_bias.predict(result) | |
result_fresh = learn_fresh.predict(result) | |
result_bias_final = clean_output(result_bias) | |
result_fresh_final = clean_output(result_fresh) | |
result_localization = model.predict(transformed, save=True) | |
return transformed, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field | |
demo = gr.Interface( | |
fn=transform_image, | |
inputs=[ | |
gr.Image(type="filepath"), | |
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"), | |
gr.Checkbox(label="Randomize inputs?"), | |
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"), | |
gr.Slider(0, 1, value=0.5, label="Center X"), | |
gr.Slider(0, 1, value=0.5, label="Center Y"), | |
gr.Slider(0, 1, value=0.5, label="Strength"), | |
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"), | |
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness") | |
# gr.Checkbox(label="Reverse Gradient Direction"), | |
], | |
examples=[ | |
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], | |
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], | |
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], | |
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5] | |
], | |
outputs=[ | |
gr.Image(label="Transformed Image"), | |
gr.Label(), | |
gr.Label(), | |
gr.Image(label="Gradient Vector Field"), | |
gr.Image(label="Inverse Gradient"), | |
gr.Image(label="Inverted Vector Field"), | |
], | |
title="Image Transformation Demo!", | |
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)", | |
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!" | |
) | |
demo.launch(share=True) | |