nick-leland's picture
Updated the app, reformated the way that the app functions
f148267
raw
history blame
17 kB
import numpy as np
import traceback
import gradio as gr
from PIL import Image
from scipy import ndimage, interpolate
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import YOLO
import cv2
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
print()
print(f"Max_dim is {max_dim}")
print()
center_y = int(center[1] * rows)
center_x = int(center[0] * cols)
center_y = abs(rows - center_y)
print(f"Image shape: {rows}x{cols}")
print(f"Center: ({center_x}, {center_y})")
print(f"Radius: {radius}, Strength: {strength}")
print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
dist_from_center = np.sqrt(x**2 + y**2)
z = func(x, y)
print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
gy, gx = np.gradient(z)
print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
# Avoid division by zero
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
center_smoothness = np.maximum(center_smoothness, 1e-6)
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
gx = gx * mask
gy = gy * mask
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
scale_factor = strength * np.log(max_dim) / 100
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
# Forward transformation
x_new = x + gx
y_new = y + gy
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Inverse transformation
x_inv = x - gx
y_inv = y - gy
x_inv = x_inv * max_dim + center_x
y_inv = y_inv * max_dim + center_y
x_inv = np.clip(x_inv, 0, cols - 1)
y_inv = np.clip(y_inv, 0, rows - 1)
# Apply transformations
channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels_forward).astype(image.dtype)
inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
return transformed_image, inverse_transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
# def invert_gradient_vector_field(gx, gy, image_shape):
# """
# Invert the gradient vector field using a more accurate method.
#
# :param gx: X-component of the gradient
# :param gy: Y-component of the gradient
# :param image_shape: Shape of the original image (height, width)
# :return: Inverted gx and gy
# """
# rows, cols = image_shape
# y, x = np.mgrid[0:rows, 0:cols]
#
# # Calculate the new positions after applying the gradient
# new_x = x + gx
# new_y = y + gy
#
# # Create a mask for valid (non-NaN, non-infinite) values
# mask = np.isfinite(new_x) & np.isfinite(new_y)
#
# # Flatten and filter the arrays
# x_flat = x[mask]
# y_flat = y[mask]
# new_x_flat = new_x[mask]
# new_y_flat = new_y[mask]
#
# # Create the inverse mapping
# inv_x = interpolate.griddata((new_x_flat, new_y_flat), x_flat, (x, y), method='linear', fill_value=np.nan)
# inv_y = interpolate.griddata((new_x_flat, new_y_flat), y_flat, (x, y), method='linear', fill_value=np.nan)
#
# # Calculate the inverse gradient
# inv_gx = inv_x - x
# inv_gy = inv_y - y
#
# # Fill NaN values with zeros
# inv_gx = np.nan_to_num(inv_gx)
# inv_gy = np.nan_to_num(inv_gy)
#
# return -inv_gx, -inv_gy # Note the negation here
def apply_gradient_transform(image, gx, gy):
"""
Apply the gradient transformation to an image.
:param image: Input image as a numpy array
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:return: Transformed image
"""
rows, cols = image.shape[:2]
y, x = np.mgrid[0:rows, 0:cols]
# Apply the transformation
x_new = x + gx
y_new = y + gy
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = []
for i in range(image.shape[2]):
channel = image[:,:,i]
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
channels.append(transformed_channel)
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image
def generate_function_gradient(func, image_shape, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
rows, cols = image_shape[:2]
max_dim = max(rows, cols)
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
y = (y - center[1] * rows) / max_dim
x = (x - center[0] * cols) / max_dim
dist_from_center = np.sqrt(x**2 + y**2)
z = func(x, y)
gy, gx = np.gradient(z)
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
center_smoothness = np.maximum(center_smoothness, 1e-6)
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
gx *= mask
gy *= mask
magnitude = np.sqrt(gx**2 + gy**2)
max_magnitude = np.max(magnitude)
if max_magnitude > 0:
gx /= max_magnitude
gy /= max_magnitude
# Increase the base scale factor
base_scale = radius * max_dim * 0.2 # Increased from 0.1 to 0.2
# Apply a non-linear scaling to the strength
adjusted_strength = np.power(strength, 1.5) # This will make the effect more pronounced at higher strengths
# Increase the maximum strength multiplier
scale_factor = base_scale * np.clip(adjusted_strength, 0, 3) # Increased max from 2 to 3
# Apply an additional scaling factor based on image size
size_factor = np.log(max_dim) / np.log(1000) # This will be 1 for 1000x1000 images, larger for bigger images
scale_factor *= size_factor
gx *= scale_factor
gy *= scale_factor
print(f"Final scale factor: {scale_factor}")
print(f"Final gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
return gx, gy
#############################
# MAIN FUNCTION HERE
#############################
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
# Loads the YOLO Model
model = YOLO("bulge_yolo_model.pt")
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
# Downsample large images
max_size = 1024 # Increased from 512 to allow for more detail
if max(I.shape[:2]) > max_size:
scale = max_size / max(I.shape[:2])
new_size = (int(I.shape[1] * scale), int(I.shape[0] * scale))
I = cv2.resize(I, new_size, interpolation=cv2.INTER_AREA)
print(f"Downsampled image to {I.shape}")
##################################
# Transformation Functions #
##################################
def pinch(x, y):
r = np.sqrt(x**2 + y**2)
return r
def zoom(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check:
radius, location, strength, edge_smoothness = definitions(rng)
center_x, center_y = location
center_smoothness = edge_smoothness
else:
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Spiral":
func = shift
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Bulge":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
edge_smoothness = 0
center_smoothness = 0
print(f"Function choice: {func_choice}")
print(f"Input image shape: {I.shape}")
print(f"Radius: {radius}, Center: ({center_x}, {center_y}), Strength: {strength}")
# strength = strength * 2 # This allows for stronger effects
try:
# Generate gradients
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
# Vectorized transformation
rows, cols = I.shape[:2]
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
x_new = x + gx
y_new = y + gy
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
transformed = cv2.remap(I, x_new, y_new, cv2.INTER_LINEAR)
inv_gx, inv_gy = -gx, -gy
x_inv = x + inv_gx
y_inv = y + inv_gy
x_inv = np.clip(x_inv, 0, cols - 1)
y_inv = np.clip(y_inv, 0, rows - 1)
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR)
print(f"Transformed image shape: {transformed.shape}")
print(f"Inverse transformed image shape: {inverse_transformed.shape}")
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False)
print(f"Vector field shape: {vector_field.shape}")
print(f"Inverted vector field shape: {inverted_vector_field.shape}")
# If we downsampled earlier, upsample the results back to original size
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]):
original_size = np.asarray(Image.open(image)).shape[:2][::-1]
transformed = cv2.resize(transformed, original_size, interpolation=cv2.INTER_LINEAR)
inverse_transformed = cv2.resize(inverse_transformed, original_size, interpolation=cv2.INTER_LINEAR)
vector_field = cv2.resize(vector_field, original_size, interpolation=cv2.INTER_LINEAR)
inverted_vector_field = cv2.resize(inverted_vector_field, original_size, interpolation=cv2.INTER_LINEAR)
except Exception as e:
print(f"Error in transformation: {str(e)}")
traceback.print_exc()
transformed = np.zeros_like(I)
inverse_transformed = np.zeros_like(I)
vector_field = np.zeros_like(I)
inverted_vector_field = np.zeros_like(I)
result = Image.fromarray(transformed)
categories = ['Distorted', 'Maze']
def clean_output(result_values):
pred, idx, probs = result_values
return dict(zip(categories, map(float, probs)))
result_bias = learn_bias.predict(result)
result_fresh = learn_fresh.predict(result)
result_bias_final = clean_output(result_bias)
result_fresh_final = clean_output(result_fresh)
result_localization = model.predict(transformed, save=True)
return transformed, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
examples=[
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Label(),
gr.Label(),
gr.Image(label="Gradient Vector Field"),
gr.Image(label="Inverse Gradient"),
gr.Image(label="Inverted Vector Field"),
],
title="Image Transformation Demo!",
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here!\nYou can read more about the project at [this repository link](https://github.com/nick-leland/DistortionML). The main function that I was working on is the 'Bulge'/'Volcano' function, I can't really guarantee that the others work as well!\nI have just added the first baseline ML model to detect if a distortion has taken place! It was only trained on mazes though ([Dataset Here](https://www.kaggle.com/datasets/nickleland/distorted-mazes)) so in order for it to detect a distortion you have to use one of the images provided in the examples! Feel free to mess around wtih other images in the meantime though!"
)
demo.launch(share=True)