nick-leland's picture
Updated the app to adjust the image generation
8a01cdc
raw
history blame
7.08 kB
import numpy as np
import gradio as gr
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
# 0.106 strength = .50
# 0.106 strength = 1
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
#Normalize the positions
# Y Needs to be flipped
center_y = int(center[1] * rows)
center_x = int(center[0] * cols)
pixel_radius = int(max_dim * radius)
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
# Calculate distance from center
dist_from_center = np.sqrt(x**2 + y**2)
# Calculate function values
z = func(x, y)
# Calculate gradients
gy, gx = np.gradient(z)
# Creating a sigmoid function to apply to masks
def sigmoid(x, center, steepness):
return 1 / (1 + np.exp(-steepness * (x - center)))
# Masking
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
# Apply mask to gradients
gx = gx * mask
gy = gy * mask
# Normalize gradient vectors
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
# Scale the effect (Play with the number 5)
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
# Create the mapping
x_new = x + gx
y_new = y + gy
# Convert back to pixel coordinates
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, edge_smoothness, center_smoothness, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
# Where does this make an array???:w
print(x.shape)
print(y.shape)
# Mess with this number
# num = 10
# if x < num or y < num:
# # This might not be correct
# return 1
# else:
# r = -np.sqrt(x**2 + y**2)
r = -np.sqrt(x**2 + y**2)
print(r.shape)
print(type(r))
# return -1 / (r + 1)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Spiral":
func = shift
elif func_choice == "Bulge":
func = bulge
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
if randomization_check == True:
rng = np.random.default_rng()
radius, location, strength, edge_smoothness= definitions(rng)
center_x = location[0]
center_y = location[1]
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
return transformed, vector_field
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge"], value="Bulge", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Image(label="Gradient Vector Field")
],
title="Image Transformation Demo!",
description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;"
)
demo.launch(share=True)