Spaces:
Build error
Build error
nick-leland
commited on
Commit
·
b43e654
1
Parent(s):
91b420f
Updated the app for demo purposes
Browse files
app.py
CHANGED
@@ -12,88 +12,88 @@ from fastai.vision.all import *
|
|
12 |
from ultralytics import ASSETS, YOLO
|
13 |
import cv2
|
14 |
|
15 |
-
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
99 |
"""
|
@@ -334,6 +334,8 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
|
|
334 |
# strength = strength * 2 # This allows for stronger effects
|
335 |
|
336 |
try:
|
|
|
|
|
337 |
# Generate gradients
|
338 |
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
|
339 |
|
@@ -358,16 +360,20 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
|
|
358 |
|
359 |
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR)
|
360 |
|
|
|
|
|
|
|
|
|
361 |
applied_transformed = cv2.remap(transformed, x_inv, y_inv, cv2.INTER_LINEAR)
|
362 |
|
363 |
-
print(f"Transformed image shape: {transformed.shape}")
|
364 |
-
print(f"Inverse transformed image shape: {inverse_transformed.shape}")
|
365 |
|
366 |
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
|
367 |
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False)
|
368 |
|
369 |
-
print(f"Vector field shape: {vector_field.shape}")
|
370 |
-
print(f"Inverted vector field shape: {inverted_vector_field.shape}")
|
371 |
|
372 |
# If we downsampled earlier, upsample the results back to original size
|
373 |
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]):
|
@@ -409,7 +415,6 @@ def transform_image(image, func_choice, randomization_check, radius, center_x, c
|
|
409 |
# print(result_localization2, "modelv8x")
|
410 |
|
411 |
|
412 |
-
YOLO_image = predict_image(transformed, model_bulge, 0.5, 0.5)
|
413 |
# YOLO_image1 = predict_image(transformed, modelv8n, 0.5, 0.5)
|
414 |
# YOLO_image2 = predict_image(transformed, modelv8x, 0.5, 0.5)
|
415 |
|
@@ -422,7 +427,7 @@ demo = gr.Interface(
|
|
422 |
fn=transform_image,
|
423 |
inputs=[
|
424 |
gr.Image(type="filepath"),
|
425 |
-
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="
|
426 |
gr.Checkbox(label="Randomize inputs?"),
|
427 |
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
|
428 |
gr.Slider(0, 1, value=0.5, label="Center X"),
|
@@ -452,7 +457,7 @@ demo = gr.Interface(
|
|
452 |
],
|
453 |
title="Image Transformation Demo!",
|
454 |
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
|
455 |
-
description="
|
456 |
)
|
457 |
|
458 |
demo.launch(share=True)
|
|
|
12 |
from ultralytics import ASSETS, YOLO
|
13 |
import cv2
|
14 |
|
15 |
+
# def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
|
16 |
+
# rows, cols = image.shape[:2]
|
17 |
+
# max_dim = max(rows, cols)
|
18 |
+
# print()
|
19 |
+
# print(f"Max_dim is {max_dim}")
|
20 |
+
# print()
|
21 |
+
#
|
22 |
+
# center_y = int(center[1] * rows)
|
23 |
+
# center_x = int(center[0] * cols)
|
24 |
+
# center_y = abs(rows - center_y)
|
25 |
+
#
|
26 |
+
# print(f"Image shape: {rows}x{cols}")
|
27 |
+
# print(f"Center: ({center_x}, {center_y})")
|
28 |
+
# print(f"Radius: {radius}, Strength: {strength}")
|
29 |
+
# print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
|
30 |
+
#
|
31 |
+
# y, x = np.ogrid[:rows, :cols]
|
32 |
+
# y = (y - center_y) / max_dim
|
33 |
+
# x = (x - center_x) / max_dim
|
34 |
+
#
|
35 |
+
# dist_from_center = np.sqrt(x**2 + y**2)
|
36 |
+
#
|
37 |
+
# z = func(x, y)
|
38 |
+
# print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
|
39 |
+
#
|
40 |
+
# gy, gx = np.gradient(z)
|
41 |
+
# print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
|
42 |
+
# print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
|
43 |
+
#
|
44 |
+
# # Avoid division by zero
|
45 |
+
# edge_smoothness = np.maximum(edge_smoothness, 1e-6)
|
46 |
+
# center_smoothness = np.maximum(center_smoothness, 1e-6)
|
47 |
+
#
|
48 |
+
# edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
|
49 |
+
# center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
|
50 |
+
# mask = edge_mask * center_mask
|
51 |
+
#
|
52 |
+
# gx = gx * mask
|
53 |
+
# gy = gy * mask
|
54 |
+
#
|
55 |
+
# magnitude = np.sqrt(gx**2 + gy**2)
|
56 |
+
# magnitude[magnitude == 0] = 1 # Avoid division by zero
|
57 |
+
# gx = gx / magnitude
|
58 |
+
# gy = gy / magnitude
|
59 |
+
#
|
60 |
+
# scale_factor = strength * np.log(max_dim) / 100
|
61 |
+
# gx = gx * scale_factor * mask
|
62 |
+
# gy = gy * scale_factor * mask
|
63 |
+
#
|
64 |
+
# print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
|
65 |
+
# print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
|
66 |
+
#
|
67 |
+
# # Forward transformation
|
68 |
+
# x_new = x + gx
|
69 |
+
# y_new = y + gy
|
70 |
+
#
|
71 |
+
# x_new = x_new * max_dim + center_x
|
72 |
+
# y_new = y_new * max_dim + center_y
|
73 |
+
#
|
74 |
+
# x_new = np.clip(x_new, 0, cols - 1)
|
75 |
+
# y_new = np.clip(y_new, 0, rows - 1)
|
76 |
+
#
|
77 |
+
# # Inverse transformation
|
78 |
+
# x_inv = x - gx
|
79 |
+
# y_inv = y - gy
|
80 |
+
#
|
81 |
+
# x_inv = x_inv * max_dim + center_x
|
82 |
+
# y_inv = y_inv * max_dim + center_y
|
83 |
+
#
|
84 |
+
# x_inv = np.clip(x_inv, 0, cols - 1)
|
85 |
+
# y_inv = np.clip(y_inv, 0, rows - 1)
|
86 |
+
#
|
87 |
+
# # Apply transformations
|
88 |
+
# channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
|
89 |
+
# for i in range(image.shape[2])]
|
90 |
+
# channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
|
91 |
+
# for i in range(image.shape[2])]
|
92 |
+
#
|
93 |
+
# transformed_image = np.dstack(channels_forward).astype(image.dtype)
|
94 |
+
# inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
|
95 |
+
#
|
96 |
+
# return transformed_image, inverse_transformed_image, (gx, gy)
|
97 |
|
98 |
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
|
99 |
"""
|
|
|
334 |
# strength = strength * 2 # This allows for stronger effects
|
335 |
|
336 |
try:
|
337 |
+
strength = 0.8
|
338 |
+
|
339 |
# Generate gradients
|
340 |
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
|
341 |
|
|
|
360 |
|
361 |
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR)
|
362 |
|
363 |
+
# Apply Inverse to detected location
|
364 |
+
YOLO_image = predict_image(transformed, model_bulge, 0.5, 0.5)
|
365 |
+
|
366 |
+
|
367 |
applied_transformed = cv2.remap(transformed, x_inv, y_inv, cv2.INTER_LINEAR)
|
368 |
|
369 |
+
# print(f"Transformed image shape: {transformed.shape}")
|
370 |
+
# print(f"Inverse transformed image shape: {inverse_transformed.shape}")
|
371 |
|
372 |
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
|
373 |
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False)
|
374 |
|
375 |
+
# print(f"Vector field shape: {vector_field.shape}")
|
376 |
+
# print(f"Inverted vector field shape: {inverted_vector_field.shape}")
|
377 |
|
378 |
# If we downsampled earlier, upsample the results back to original size
|
379 |
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]):
|
|
|
415 |
# print(result_localization2, "modelv8x")
|
416 |
|
417 |
|
|
|
418 |
# YOLO_image1 = predict_image(transformed, modelv8n, 0.5, 0.5)
|
419 |
# YOLO_image2 = predict_image(transformed, modelv8x, 0.5, 0.5)
|
420 |
|
|
|
427 |
fn=transform_image,
|
428 |
inputs=[
|
429 |
gr.Image(type="filepath"),
|
430 |
+
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
|
431 |
gr.Checkbox(label="Randomize inputs?"),
|
432 |
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
|
433 |
gr.Slider(0, 1, value=0.5, label="Center X"),
|
|
|
457 |
],
|
458 |
title="Image Transformation Demo!",
|
459 |
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
|
460 |
+
description=""
|
461 |
)
|
462 |
|
463 |
demo.launch(share=True)
|