import numpy as np import gradio as gr from PIL import Image from scipy import ndimage import matplotlib.pyplot as plt from bulk_bulge_generation import definitions, smooth # from transformers import pipeline import fastai from fastcore.all import * from fastai.vision.all import * def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20): # 0.106 strength = .50 # 0.106 strength = 1 rows, cols = image.shape[:2] max_dim = max(rows, cols) #Normalize the positions # Y Needs to be flipped center_y = int(center[1] * rows) center_x = int(center[0] * cols) # Inverts the Y axis (Numpy is 0 index at top of image) center_y = abs(rows - center_y) print() print(rows, cols) print("y =", center_y, "/", rows) print("x =", center_x, "/", cols) print() pixel_radius = int(max_dim * radius) y, x = np.ogrid[:rows, :cols] y = (y - center_y) / max_dim x = (x - center_x) / max_dim # Calculate distance from center dist_from_center = np.sqrt(x**2 + y**2) # Calculate function values z = func(x, y) # Calculate gradients gy, gx = np.gradient(z) # Creating a sigmoid function to apply to masks def sigmoid(x, center, steepness): return 1 / (1 + np.exp(-steepness * (x - center))) print(radius) print(strength) print(edge_smoothness) print(center_smoothness) # Masking edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1) center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1) mask = edge_mask * center_mask # Apply mask to gradients gx = gx * mask gy = gy * mask # Normalize gradient vectors magnitude = np.sqrt(gx**2 + gy**2) magnitude[magnitude == 0] = 1 # Avoid division by zero gx = gx / magnitude gy = gy / magnitude # Scale the effect (Play with the number 5) scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size gx = gx * scale_factor * mask gy = gy * scale_factor * mask # Create the mapping x_new = x + gx y_new = y + gy # Convert back to pixel coordinates x_new = x_new * max_dim + center_x y_new = y_new * max_dim + center_y # Ensure the new coordinates are within the image boundaries x_new = np.clip(x_new, 0, cols - 1) y_new = np.clip(y_new, 0, rows - 1) # Apply the transformation to each channel channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect') for i in range(image.shape[2])] transformed_image = np.dstack(channels).astype(image.dtype) return transformed_image, (gx, gy) def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False): """ Create a gradient vector field visualization with option to reverse direction. :param gx: X-component of the gradient :param gy: Y-component of the gradient :param image_shape: Shape of the original image (height, width) :param step: Spacing between arrows :param reverse: If True, reverse the direction of the arrows :return: Gradient vector field as a numpy array (RGB image) """ rows, cols = image_shape y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int) # Calculate the scale based on image size max_dim = max(rows, cols) scale = max_dim / 1000 # Adjusted for longer arrows # Reverse direction if specified direction = -1 if reverse else 1 fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100) ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x], scale=scale, scale_units='width', width=0.002 * max_dim / 500, headwidth=8, headlength=12, headaxislength=0, color='black', minshaft=2, minlength=0, pivot='tail') ax.set_xlim(0, cols) ax.set_ylim(rows, 0) ax.set_aspect('equal') ax.axis('off') fig.tight_layout(pad=0) fig.canvas.draw() vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) return vector_field ############################# # MAIN FUNCTION HERE ############################# # pipeline = pipeline(task="image-classification", model="nick-leland/distortionml") # Version Check print(f"NumPy version: {np.__version__}") print(f"PyTorch version: {torch.__version__}") print(f"FastAI version: {fastai.__version__}") learn_bias = load_learner('model_bias.pkl') learn_fresh = load_learner('model_fresh.pkl') def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1): I = np.asarray(Image.open(image)) def pinch(x, y): return x**2 + y**2 def shift(x, y): return np.arctan2(y, x) def bulge(x, y): r = -np.sqrt(x**2 + y**2) return r def spiral(x, y, frequency=1): r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return r * np.sin(theta - frequency * r) rng = np.random.default_rng() if randomization_check == True: radius, location, strength, edge_smoothness= definitions(rng) center_x = location[0] center_y = location[1] # Temporarily disabling and using these values. # edge_smoothness = 0.25 * strength # center_smoothness = 0.25 * strength edge_smoothness, center_smoothness = smooth(rng, strength) if func_choice == "Pinch": func = pinch elif func_choice == "Spiral": func = shift elif func_choice == "Bulge": func = bulge edge_smoothness = 0 center_smoothness = 0 elif func_choice == "Volcano": func = bulge elif func_choice == "Shift Up": func = lambda x, y: spiral(x, y, frequency=spiral_frequency) transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness) vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient) # GRADIO CHANGE HERE # predictions = pipeline(transformed) # Have to convert to image first result = Image.fromarray(transformed) result_bias = str(learn_bias.predict(result)) result_fresh = str(learn_fresh.predict(result)) print("Results") print(result_bias) print(result_fresh) return transformed, result_bias, result_fresh, vector_field demo = gr.Interface( fn=transform_image, inputs=[ gr.Image(type="filepath"), gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Volcano", label="Function"), gr.Checkbox(label="Randomize inputs?"), gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"), gr.Slider(0, 1, value=0.5, label="Center X"), gr.Slider(0, 1, value=0.5, label="Center Y"), gr.Slider(0, 1, value=0.5, label="Strength"), # gr.Slider(0, 1, value=0.5, label="Edge Smoothness"), # gr.Slider(0, 0.5, value=0.1, label="Center Smoothness") # gr.Checkbox(label="Reverse Gradient Direction"), ], outputs=[ gr.Image(label="Transformed Image"), # gr.Image(label="Result", num_top_classes=2) gr.Textbox(label='Result Bias'), gr.Textbox(label='Result Fresh'), gr.Image(label="Gradient Vector Field") ], title="Image Transformation Demo!", description="This is the baseline function that will be used to generate the database for a machine learning model I am working on called 'DistortionMl'! The goal of this model is to detect and then reverse image transformations that can be generated here! You can read more about the project at this repository link : https://github.com/nick-leland/DistortionML. The main function that I was working on is the 'Bulge' function, I can't really guarantee that the others work well (;" ) demo.launch(share=True)