Spaces:
Sleeping
Sleeping
File size: 5,587 Bytes
53715b3 7409f0d 301d4ae d804135 301d4ae d804135 7409f0d 53715b3 e55fb20 ddcf7cb 472609c e55fb20 51f2947 e55fb20 301d4ae ddcf7cb 301d4ae ddcf7cb 301d4ae ddcf7cb 301d4ae ddcf7cb 743b8c4 ddcf7cb 301d4ae e55fb20 5c5f11f ddcf7cb 5292003 ddcf7cb 5292003 5307707 301d4ae e55fb20 301d4ae ddcf7cb e55fb20 301d4ae e55fb20 301d4ae e55fb20 301d4ae ddcf7cb 301d4ae ddcf7cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information
# Global variables for model and feature columns
MODEL = None
def load_model():
"""Load the ONNX model"""
global MODEL
try:
model_path = Path("model/rd2l_forest.onnx")
if not model_path.exists():
return "Model file not found at: " + str(model_path)
MODEL = ort.InferenceSession(str(model_path))
return "Model loaded successfully"
except Exception as e:
return f"Error loading model: {str(e)}"
def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Process player data with correct feature structure"""
try:
# Clean player ID from URL if needed
if "/" in player_id:
player_id = player_id.split("/")[-1]
# Create initial data structure with basic features
data = {
'mmr': float(mmr),
'p1': int(comf_1),
'p2': int(comf_2),
'p3': int(comf_3),
'p4': int(comf_4),
'p5': int(comf_5),
'count': 0,
'mean': 0,
'std': 0,
'min': 0,
'max': 0,
'sum': 0,
'total_games_played': 0,
'total_winrate': 0
}
# Add hero-specific features
for i in range(1, 139): # Add all possible hero IDs
data[f'games_{i}'] = 0
data[f'winrate_{i}'] = 0
# Get hero statistics from OpenDota
try:
hero_stats = hero_information(player_id)
data['total_games_played'] = hero_stats['total_games_played']
data['total_winrate'] = hero_stats['total_winrate']
# Update hero-specific stats
for key, value in hero_stats.items():
if key in data:
data[key] = value
except Exception as e:
print(f"Warning - Error fetching hero data: {str(e)}")
# Convert to DataFrame
df = pd.DataFrame([data])
print(f"Processed data shape: {df.shape}")
print(f"Number of features: {len(df.columns)}")
print(f"First few columns: {list(df.columns)[:5]}")
return df
except Exception as e:
return f"Error processing player data: {str(e)}"
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Main prediction function for Gradio interface"""
try:
# Check if model is loaded
if MODEL is None:
result = load_model()
if not result.startswith("Model loaded"):
return result
# Process input data
processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
if isinstance(processed_data, str): # Error occurred
return processed_data
# Make prediction
try:
input_name = MODEL.get_inputs()[0].name
prediction = MODEL.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
predicted_cost = round(float(prediction[0]), 2)
except Exception as e:
return f"Error during prediction: {str(e)}\nProcessed data shape: {processed_data.shape}"
return f"""Predicted Cost: {predicted_cost}
Player Details:
- MMR: {mmr}
- Position Comfort:
* Pos 1: {comf_1}
* Pos 2: {comf_2}
* Pos 3: {comf_3}
* Pos 4: {comf_4}
* Pos 5: {comf_5}
Note: This prediction is based on historical data and player statistics from OpenDota."""
except Exception as e:
return f"Error in prediction pipeline: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_cost,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
placeholder="Enter player ID or full profile URL"),
gr.Number(label="MMR", value=3000),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
],
examples=[
["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
],
outputs=gr.Textbox(label="Prediction Results"),
title="RD2L Player Cost Predictor",
description="""This tool predicts the auction cost for RD2L players based on their MMR,
position comfort levels, and historical performance data from OpenDota.
Enter a player's OpenDota ID or profile URL along with their current stats
to get a predicted cost.""",
article="""### How it works
- The predictor uses machine learning trained on historical RD2L draft data
- Player statistics are fetched from OpenDota API
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
- Predictions are based on both current stats and historical performance"""
)
if __name__ == "__main__":
print("===== Application Startup =====")
print(load_model())
demo.launch(server_name="0.0.0.0")
|