Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import gradio as gr | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting! | |
# Load model. | |
def generate(): | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) | |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
# Ensure sampler uses "trailing" timesteps and "sample" prediction type. | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample") | |
# Ensure using the same inference steps as the loaded model and CFG set to 0. | |
def greet(prompt): | |
image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0].save("output.png") | |
return image | |
demo = gr.Interface(fn=greet, inputs="text", outputs="image") | |
demo.launch() |