nick911 commited on
Commit
42db233
·
verified ·
1 Parent(s): 85a1c33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -9,15 +9,14 @@ import spaces
9
  base = "stabilityai/stable-diffusion-xl-base-1.0"
10
  repo = "ByteDance/SDXL-Lightning"
11
  ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
12
-
 
 
 
 
13
  # Load model.
14
  @spaces.GPU
15
  def generate(prompt):
16
- unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
17
- unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
18
- pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
19
- # Ensure sampler uses "trailing" timesteps and "sample" prediction type.
20
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
21
  image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0]
22
  return image
23
  # Ensure using the same inference steps as the loaded model and CFG set to 0.
 
9
  base = "stabilityai/stable-diffusion-xl-base-1.0"
10
  repo = "ByteDance/SDXL-Lightning"
11
  ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
12
+ unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
13
+ unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
14
+ pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
15
+ # Ensure sampler uses "trailing" timesteps and "sample" prediction type.
16
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
17
  # Load model.
18
  @spaces.GPU
19
  def generate(prompt):
 
 
 
 
 
20
  image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0]
21
  return image
22
  # Ensure using the same inference steps as the loaded model and CFG set to 0.