Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,26 +3,29 @@ from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDisc
|
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
from safetensors.torch import load_file
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
|
| 7 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 8 |
repo = "ByteDance/SDXL-Lightning"
|
| 9 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
|
| 10 |
|
| 11 |
# Load model.
|
| 12 |
-
|
| 13 |
-
def generate():
|
| 14 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
| 15 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
| 16 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 17 |
# Ensure sampler uses "trailing" timesteps and "sample" prediction type.
|
| 18 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
| 19 |
-
|
| 20 |
-
# Ensure using the same inference steps as the loaded model and CFG set to 0.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def greet(prompt):
|
| 24 |
image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0].save("output.png")
|
| 25 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
demo = gr.Interface(fn=
|
| 28 |
demo.launch()
|
|
|
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
from safetensors.torch import load_file
|
| 5 |
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
|
| 8 |
|
| 9 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 10 |
repo = "ByteDance/SDXL-Lightning"
|
| 11 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
|
| 12 |
|
| 13 |
# Load model.
|
| 14 |
+
@spaces.GPU
|
| 15 |
+
def generate(prompt):
|
| 16 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
| 17 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
| 18 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 19 |
# Ensure sampler uses "trailing" timesteps and "sample" prediction type.
|
| 20 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0].save("output.png")
|
| 22 |
return image
|
| 23 |
+
# Ensure using the same inference steps as the loaded model and CFG set to 0.
|
| 24 |
+
|
| 25 |
+
# @spaces.GPU
|
| 26 |
+
# def greet(prompt):
|
| 27 |
+
# image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0].save("output.png")
|
| 28 |
+
# return image
|
| 29 |
|
| 30 |
+
demo = gr.Interface(fn=generate, inputs="text", outputs="image")
|
| 31 |
demo.launch()
|