nick911 commited on
Commit
f70f45f
·
verified ·
1 Parent(s): 3521ec1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -5,23 +5,26 @@ from safetensors.torch import load_file
5
  import gradio as gr
6
  import spaces
7
 
8
-
9
  base = "stabilityai/stable-diffusion-xl-base-1.0"
10
  repo = "ByteDance/SDXL-Lightning"
11
- ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
 
 
12
  unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
13
  unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
14
  pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
 
15
  # Ensure sampler uses "trailing" timesteps and "sample" prediction type.
16
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
 
17
  # Load model.
18
  @spaces.GPU
19
- def generate(prompt):
20
- image = pipe(prompt, num_inference_steps=1, guidance_scale=0).images[0]
21
  return image
22
 
23
  output_image = gr.Image(type="pil")
24
- demo = gr.Interface(fn=generate, inputs="text", outputs=output_image)
25
 
26
  if __name__ == "__main__":
27
  unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
 
5
  import gradio as gr
6
  import spaces
7
 
 
8
  base = "stabilityai/stable-diffusion-xl-base-1.0"
9
  repo = "ByteDance/SDXL-Lightning"
10
+ ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
11
+
12
+ # Load model.
13
  unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
14
  unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
15
  pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
16
+
17
  # Ensure sampler uses "trailing" timesteps and "sample" prediction type.
18
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
19
+
20
  # Load model.
21
  @spaces.GPU
22
+ def generate(prompt, steps):
23
+ image = pipe(prompt, num_inference_steps=steps, guidance_scale=0).images[0]
24
  return image
25
 
26
  output_image = gr.Image(type="pil")
27
+ demo = gr.Interface(fn=generate, inputs=[gr.Text, gr.slider], outputs=output_image)
28
 
29
  if __name__ == "__main__":
30
  unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)