Spaces:
Runtime error
Runtime error
File size: 7,485 Bytes
238ab50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# code taken from https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec
# and https://pytorch.org/tutorials/beginner/transformer_tutorial.html
import torch
import math
import copy
class Embedder(torch.nn.Module):
def __init__(self, vocab_size, d_model):
super().__init__()
self.embed = torch.nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embed(x)
class PositionalEncoder(torch.nn.Module):
def __init__(self, d_model, dropout=0.1, max_seq_len=80):
super().__init__()
self.dropout = torch.nn.Dropout(p=dropout)
position = torch.arange(max_seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_seq_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe',
pe) # notifies PyTorch that this value should be saved like a model parameter but should not have gradients
def forward(self, x):
x = x + self.pe[:x.size(0)]
return self.dropout(x)
class MultiHeadAttention(torch.nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = torch.nn.Linear(d_model, d_model)
self.v_linear = torch.nn.Linear(d_model, d_model)
self.k_linear = torch.nn.Linear(d_model, d_model)
self.dropout = torch.nn.Dropout(dropout)
self.out = torch.nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention using function we will define next
scores = attention(q, k, v, self.d_k, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model)
output = self.out(concat)
return output
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = torch.nn.functional.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class FeedForward(torch.nn.Module):
def __init__(self, d_model, d_ff=2048, dropout=0.1):
super().__init__()
# We set d_ff as a default to 2048
self.linear_1 = torch.nn.Linear(d_model, d_ff)
self.dropout = torch.nn.Dropout(dropout)
self.linear_2 = torch.nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(torch.nn.functional.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class Norm(torch.nn.Module):
def __init__(self, d_model, eps=1e-6):
super().__init__()
self.size = d_model
# create two learnable parameters to calibrate normalization
self.alpha = torch.nn.Parameter(torch.ones(self.size))
self.bias = torch.nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
# build an encoder layer with one multi-head attention layer and one # feed-forward layer
class EncoderLayer(torch.nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model)
self.dropout_1 = torch.nn.Dropout(dropout)
self.dropout_2 = torch.nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2, x2, x2, mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
# build a decoder layer with two multi-head attention layers and
# one feed-forward layer
class DecoderLayer(torch.nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.norm_3 = Norm(d_model)
self.dropout_1 = torch.nn.Dropout(dropout)
self.dropout_2 = torch.nn.Dropout(dropout)
self.dropout_3 = torch.nn.Dropout(dropout)
self.attn_1 = MultiHeadAttention(heads, d_model)
self.attn_2 = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model)
def forward(self, x, e_outputs, src_mask, trg_mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs,
src_mask))
x2 = self.norm_3(x)
x = x + self.dropout_3(self.ff(x2))
return x
# We can then build a convenient cloning function that can generate multiple layers:
def get_clones(module, N):
return torch.nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Encoder(torch.nn.Module):
def __init__(self, vocab_size, d_model, N, heads):
super().__init__()
self.N = N
self.embed = Embedder(vocab_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(EncoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, src, mask):
x = self.embed(src)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, mask)
return self.norm(x)
class Decoder(torch.nn.Module):
def __init__(self, vocab_size, d_model, N, heads):
super().__init__()
self.N = N
self.embed = Embedder(vocab_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(DecoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, trg, e_outputs, src_mask, trg_mask):
x = self.embed(trg)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, e_outputs, src_mask, trg_mask)
return self.norm(x)
class Transformer(torch.nn.Module):
def __init__(self, src_vocab, trg_vocab, d_model, N, heads):
super().__init__()
self.encoder = Encoder(src_vocab, d_model, N, heads)
self.decoder = Decoder(trg_vocab, d_model, N, heads)
self.out = torch.nn.Linear(d_model, trg_vocab)
def forward(self, src, trg, src_mask, trg_mask):
e_outputs = self.encoder(src, src_mask)
d_output = self.decoder(trg, e_outputs, src_mask, trg_mask)
output = self.out(d_output)
return output
# we don't perform softmax on the output as this will be handled
# automatically by our loss function |