Update app.py
Browse files
app.py
CHANGED
@@ -52,6 +52,12 @@ def visualize_prediction(pil_img, output_dict, threshold=0.5, id2label=None):
|
|
52 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
|
53 |
plt.axis("off")
|
54 |
return fig2img(plt.gcf())
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
57 |
|
@@ -60,14 +66,14 @@ def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
|
60 |
|
61 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
62 |
|
|
|
63 |
if validators.url(url_input):
|
64 |
-
image =
|
65 |
#Make prediction
|
66 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
67 |
#Visualize prediction
|
68 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
69 |
-
|
70 |
-
return viz_img, image
|
71 |
|
72 |
elif image_input:
|
73 |
image = image_input
|
@@ -81,7 +87,7 @@ def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
|
81 |
#Visualize prediction
|
82 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
83 |
|
84 |
-
return viz_img
|
85 |
|
86 |
def set_example_image(example: list) -> dict:
|
87 |
return gr.Image.update(value=example[0])
|
@@ -136,7 +142,7 @@ with demo:
|
|
136 |
img_output_from_url = gr.Image(shape=(750,750))
|
137 |
|
138 |
with gr.Row():
|
139 |
-
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
|
140 |
|
141 |
url_but = gr.Button('Detect')
|
142 |
|
@@ -163,7 +169,7 @@ with demo:
|
|
163 |
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload,original_image],queue=True)
|
164 |
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam,original_image],queue=True)
|
165 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
166 |
-
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
|
167 |
|
168 |
|
169 |
gr.Markdown("")
|
|
|
52 |
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
|
53 |
plt.axis("off")
|
54 |
return fig2img(plt.gcf())
|
55 |
+
|
56 |
+
def get_original_image(url_input):
|
57 |
+
if validators.url(url_input):
|
58 |
+
image = Image.open(requests.get(url_input, stream=True).raw)
|
59 |
+
|
60 |
+
return image
|
61 |
|
62 |
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
|
63 |
|
|
|
66 |
|
67 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
68 |
|
69 |
+
|
70 |
if validators.url(url_input):
|
71 |
+
image = get_original_image(url_input)
|
72 |
#Make prediction
|
73 |
processed_outputs = make_prediction(image, feature_extractor, model)
|
74 |
#Visualize prediction
|
75 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
76 |
+
|
|
|
77 |
|
78 |
elif image_input:
|
79 |
image = image_input
|
|
|
87 |
#Visualize prediction
|
88 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
89 |
|
90 |
+
return viz_img
|
91 |
|
92 |
def set_example_image(example: list) -> dict:
|
93 |
return gr.Image.update(value=example[0])
|
|
|
142 |
img_output_from_url = gr.Image(shape=(750,750))
|
143 |
|
144 |
with gr.Row():
|
145 |
+
example_url = gr.Dataset(components=[url_input,original_image],samples=[[str(url)] for url in urls],[])
|
146 |
|
147 |
url_but = gr.Button('Detect')
|
148 |
|
|
|
169 |
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload,original_image],queue=True)
|
170 |
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam,original_image],queue=True)
|
171 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
172 |
+
example_url.click(fn=[set_example_url,get_original_image],inputs=[example_url,example_url],outputs=[url_input,original_image])
|
173 |
|
174 |
|
175 |
gr.Markdown("")
|