Update app.py
Browse files
app.py
CHANGED
@@ -9,18 +9,27 @@ import gradio as gr
|
|
9 |
import pickle
|
10 |
from threading import Lock
|
11 |
|
12 |
-
|
|
|
13 |
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
return vectorstore
|
22 |
|
23 |
-
vectorstore = load_vectorstore('vanguard-embeddings',sbert_emb)
|
24 |
|
25 |
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
26 |
You can assume the question about investing and the investment management industry.
|
@@ -104,6 +113,10 @@ with block:
|
|
104 |
type="password",
|
105 |
)
|
106 |
|
|
|
|
|
|
|
|
|
107 |
chatbot = gr.Chatbot()
|
108 |
|
109 |
with gr.Row():
|
@@ -133,6 +146,7 @@ with block:
|
|
133 |
state = gr.State()
|
134 |
agent_state = gr.State()
|
135 |
|
|
|
136 |
submit.click(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
|
137 |
message.submit(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
|
138 |
|
|
|
9 |
import pickle
|
10 |
from threading import Lock
|
11 |
|
12 |
+
model_options = {'all-mpnet-base-v2': "sentence-transformers/all-mpnet-base-v2",
|
13 |
+
'instructor-base'}: "hkunlp/instructor-base"}
|
14 |
|
15 |
+
def load_vectorstore(model):
|
16 |
+
'''load embeddings and vectorstore'''
|
17 |
|
18 |
+
if 'mpnet' in model:
|
19 |
+
|
20 |
+
emb = HuggingFaceEmbeddings(model_name=model)
|
21 |
|
22 |
+
return FAISS.load_local('vanguard-embeddings', emb)
|
23 |
+
|
24 |
+
elif 'instructor'in model:
|
25 |
+
|
26 |
+
emb = HuggingFaceInstructEmbeddings(model_name=model,
|
27 |
+
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
|
28 |
+
embed_instruction='Represent the Financial paragraph for retrieval: ')
|
29 |
+
return FAISS.load_local('vanguard-embeddings-inst', emb)
|
30 |
|
|
|
31 |
|
32 |
+
# vectorstore = load_vectorstore('vanguard-embeddings',sbert_emb)
|
33 |
|
34 |
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
35 |
You can assume the question about investing and the investment management industry.
|
|
|
113 |
type="password",
|
114 |
)
|
115 |
|
116 |
+
embeddings = gr.Radio(choices=list(model_options.keys()),value=list(model_options.keys())[0], label='Choose your Embedding Model')
|
117 |
+
|
118 |
+
vectorstore = load_vectorstore(model_options[embeddings])
|
119 |
+
|
120 |
chatbot = gr.Chatbot()
|
121 |
|
122 |
with gr.Row():
|
|
|
146 |
state = gr.State()
|
147 |
agent_state = gr.State()
|
148 |
|
149 |
+
|
150 |
submit.click(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
|
151 |
message.submit(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
|
152 |
|