File size: 8,165 Bytes
cc8b68a
 
 
 
 
 
 
 
8b9a578
0cd2596
a2a2e1d
 
 
 
cc8b68a
c0abd8f
cc8b68a
 
 
 
 
 
 
 
 
 
 
301709a
a2a2e1d
 
301709a
a2a2e1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8b68a
 
 
 
 
c0abd8f
cc8b68a
 
 
 
7127dae
cc8b68a
 
 
7127dae
6785bf2
cc8b68a
 
7127dae
2b56f41
cc8b68a
 
e6f0637
 
cc8b68a
da3f073
cc8b68a
7127dae
 
cc8b68a
ab4e62c
 
 
cc8b68a
 
 
 
 
 
7127dae
cc8b68a
 
 
 
 
597c22c
 
cc8b68a
 
 
 
597c22c
cc8b68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7127dae
cc8b68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561f7e1
 
cc8b68a
 
 
 
dbf6a8c
cc8b68a
 
 
 
 
 
 
b21fe20
 
cc8b68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f461986
 
 
568ccb5
22d605f
 
f461986
568ccb5
cc8b68a
72152ff
ec56c2c
f461986
 
 
cc8b68a
f461986
cc8b68a
 
 
 
 
 
 
 
 
b21fe20
cc8b68a
 
 
 
 
 
 
 
 
 
7127dae
cc8b68a
 
 
 
002e729
 
 
 
cc8b68a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
from pydub import AudioSegment
import openai
from openai import OpenAI
import feedparser
from pathlib import Path
import wikipedia
import json
import streamlit as st
import requests
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import io

client = OpenAI()

# def load_whisper_api(audio):

#     '''Transcribe YT audio to text using Open AI API'''

#     import openai
#     file = open(audio, "rb")
#     transcript = openai.Audio.translate("whisper-1", file)

#     return transcript

def export_to_word(podcast_info,podcast_title):
    # Create a new Word document
    doc = Document()
    doc.add_heading(podcast_title, 0)

    # Adding podcast summary
    p = doc.add_paragraph()
    run = p.add_run("Podcast Summary:\n")
    run.bold = True
    run.font.size = Pt(12)
    p.add_run(podcast_info['podcast_summary'])

    # Adding podcast guest details
    p = doc.add_paragraph()
    run = p.add_run("\nPodcast Guest:\n")
    run.bold = True
    run.font.size = Pt(12)
    p.add_run(podcast_info['podcast_guest'])

    # Adding key moments
    p = doc.add_paragraph()
    run = p.add_run("\nKey Moments:\n")
    run.bold = True
    run.font.size = Pt(12)
    p.add_run(podcast_info['podcast_highlights'])

    # Save the document to a byte stream
    byte_io = io.BytesIO()
    doc.save(byte_io)
    byte_io.seek(0)

    return byte_io
    
@st.cache_data
def load_whisper_api(audio):

    '''Transcribe YT audio to text using Open AI API'''
    file = open(audio, "rb")
    transcript = client.audio.transcriptions.create(model="whisper-1", file=file,response_format="text")

    return transcript

@st.cache_data
def get_transcribe_podcast(rss_url, local_path='/data/'):
    
    st.info("Starting Podcast Transcription Function...")
    print("Feed URL: ", rss_url)
    print("Local Path:", local_path)  

    
    # Download the podcast episode by parsing the RSS feed
    p = Path(local_path)
    # p.mkdir(exist_ok=True)

    st.info("Downloading the podcast episode...")

    episode_name = "podcast_episode.mp3"
  
    with requests.get(rss_url, stream=True) as r:
        r.raise_for_status()
        episode_path = p.joinpath(episode_name)
        print(f'episode path {episode_path}')
        
        with open(episode_path, 'wb') as f:
            for chunk in r.iter_content(chunk_size=8192):
                f.write(chunk)

    st.info("Podcast Episode downloaded")
    
    # Perform the transcription
    st.info("Starting podcast transcription")
    
    audio_file = episode_path
    
    
    #Get size of audio file
    audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)

    print(f'audio size: {audio_size}')

  #Check if file is > 24mb, if not then use Whisper API
    if audio_size <= 25:

        #Use whisper API
        results = load_whisper_api(audio_file)

    else:

        st.info('File size larger than 24mb, applying chunking and transcription')

        song = AudioSegment.from_file(audio_file, format='mp3')

        # PyDub handles time in milliseconds
        twenty_minutes = 20 * 60 * 1000
    
        chunks = song[::twenty_minutes]
    
        transcriptions = []

        for i, chunk in enumerate(chunks):
            chunk.export(f'chunk_{i}.mp3', format='mp3')
            transcriptions.append(load_whisper_api(f'chunk_{i}.mp3'))

        results = ','.join(transcriptions)

    # Return the transcribed text
    st.info("Podcast transcription completed, returning results...")
    
    return results

@st.cache_data
def get_podcast_summary(podcast_transcript):
  
    instructPrompt = """
    You are a podcast analyst and your main task is to summarize the key and important points of
    the podcast for a busy professional by highlighting the main and important points
    to ensure the professional has a sufficient summary of the podcast. Include any questions you consider important or 
    any points that warrant further investigation.
    
    Please use bulletpoints.
    
    """
    
    request = instructPrompt + podcast_transcript
    
    chatOutput = client.chat.completions.create(model="gpt-4-turbo-preview",
                                            messages=[{"role": "system", "content": "You are a helpful podcast analyzer assistant"},
                                                      {"role": "user", "content": request}
                                                      ]
                                            )
    
    podcastSummary = chatOutput.choices[0].message.content
    
    return podcastSummary

@st.cache_data
def get_podcast_guest(podcast_transcript):
    '''Get guest name, professional title, organization name'''

    completion = client.chat.completions.create(
    model="gpt-4-turbo-preview",
    messages=[{"role": "user", "content": podcast_transcript}],
    functions=[
        
    {
        "name": "get_podcast_guest_information",
        "description": "Get information on the podcast guest using their full name and the name of the organization they are part of to search for them on Wikipedia or Google",
        "parameters": {
            "type": "object",
            "properties": {
                "guest_name": {
                    "type": "string",
                    "description": "The full name of the guest who is being interviewed in the podcast",
                },
                "guest_organization": {
                    "type": "string",
                    "description": "The name or details of the organization that the podcast guest belongs to, works for or runs",
                },
                "guest_title": {
                    "type": "string",
                    "description": "The title, designation or role the podcast guest holds or type of work that the podcast guest in the organization does",
                },
            },
            "required": ["guest_name"],
        },
    }
],
    function_call={"name": "get_podcast_guest_information"}
)

    podcast_guest = ""
    podcast_guest_org = ""
    podcast_guest_title = ""
    response_message = completion.choices[0].message.function_call

    print(f'func res: {response_message}')
    
    if response_message:

        function_name = response_message.name
        function_args = json.loads(response_message.arguments)
        podcast_guest=function_args.get("guest_name")
        podcast_guest_org=function_args.get("guest_organization")
        podcast_guest_title=function_args.get("guest_title")

    return (podcast_guest,podcast_guest_org,podcast_guest_title)

@st.cache_data
def get_podcast_highlights(podcast_transcript):

    instructPrompt = """
    Extract some key moments in the podcast. These are typically interesting insights from the guest or critical questions that the host might have put forward. It could also be a discussion on a hot topic or controversial opinion
"""
    request = instructPrompt + podcast_transcript

    chatOutput = client.chat.completions.create(model="gpt-4-turbo-preview",
                                            messages=[{"role": "system", "content": "You are a helpful assistant."},
                                                      {"role": "user", "content": podcast_transcript}
                                                      ]
                                            )

    podcastHighlights = chatOutput.choices[0].message.content
    
    return podcastHighlights

@st.cache_data
def process_podcast(url, path='/data/'):

    '''Get podcast transcription into json'''
    
    output = {}
    podcast_details = get_transcribe_podcast(url, path)
    podcast_summary = get_podcast_summary(podcast_details)
    podcast_guest_details = get_podcast_guest(podcast_details)
    podcast_highlights = get_podcast_highlights(podcast_details)
    output['podcast_details'] = podcast_details
    output['podcast_summary'] = podcast_summary
    output['podcast_guest'] = podcast_guest_details[0]
    output['podcast_guest_org'] = podcast_guest_details[1]
    output['podcast_guest_title'] = podcast_guest_details[2]
    output['podcast_highlights'] = podcast_highlights
    
    return output