Spaces:
Sleeping
Sleeping
File size: 8,165 Bytes
cc8b68a 8b9a578 0cd2596 a2a2e1d cc8b68a c0abd8f cc8b68a 301709a a2a2e1d 301709a a2a2e1d cc8b68a c0abd8f cc8b68a 7127dae cc8b68a 7127dae 6785bf2 cc8b68a 7127dae 2b56f41 cc8b68a e6f0637 cc8b68a da3f073 cc8b68a 7127dae cc8b68a ab4e62c cc8b68a 7127dae cc8b68a 597c22c cc8b68a 597c22c cc8b68a 7127dae cc8b68a 561f7e1 cc8b68a dbf6a8c cc8b68a b21fe20 cc8b68a f461986 568ccb5 22d605f f461986 568ccb5 cc8b68a 72152ff ec56c2c f461986 cc8b68a f461986 cc8b68a b21fe20 cc8b68a 7127dae cc8b68a 002e729 cc8b68a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
from pydub import AudioSegment
import openai
from openai import OpenAI
import feedparser
from pathlib import Path
import wikipedia
import json
import streamlit as st
import requests
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import io
client = OpenAI()
# def load_whisper_api(audio):
# '''Transcribe YT audio to text using Open AI API'''
# import openai
# file = open(audio, "rb")
# transcript = openai.Audio.translate("whisper-1", file)
# return transcript
def export_to_word(podcast_info,podcast_title):
# Create a new Word document
doc = Document()
doc.add_heading(podcast_title, 0)
# Adding podcast summary
p = doc.add_paragraph()
run = p.add_run("Podcast Summary:\n")
run.bold = True
run.font.size = Pt(12)
p.add_run(podcast_info['podcast_summary'])
# Adding podcast guest details
p = doc.add_paragraph()
run = p.add_run("\nPodcast Guest:\n")
run.bold = True
run.font.size = Pt(12)
p.add_run(podcast_info['podcast_guest'])
# Adding key moments
p = doc.add_paragraph()
run = p.add_run("\nKey Moments:\n")
run.bold = True
run.font.size = Pt(12)
p.add_run(podcast_info['podcast_highlights'])
# Save the document to a byte stream
byte_io = io.BytesIO()
doc.save(byte_io)
byte_io.seek(0)
return byte_io
@st.cache_data
def load_whisper_api(audio):
'''Transcribe YT audio to text using Open AI API'''
file = open(audio, "rb")
transcript = client.audio.transcriptions.create(model="whisper-1", file=file,response_format="text")
return transcript
@st.cache_data
def get_transcribe_podcast(rss_url, local_path='/data/'):
st.info("Starting Podcast Transcription Function...")
print("Feed URL: ", rss_url)
print("Local Path:", local_path)
# Download the podcast episode by parsing the RSS feed
p = Path(local_path)
# p.mkdir(exist_ok=True)
st.info("Downloading the podcast episode...")
episode_name = "podcast_episode.mp3"
with requests.get(rss_url, stream=True) as r:
r.raise_for_status()
episode_path = p.joinpath(episode_name)
print(f'episode path {episode_path}')
with open(episode_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
st.info("Podcast Episode downloaded")
# Perform the transcription
st.info("Starting podcast transcription")
audio_file = episode_path
#Get size of audio file
audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)
print(f'audio size: {audio_size}')
#Check if file is > 24mb, if not then use Whisper API
if audio_size <= 25:
#Use whisper API
results = load_whisper_api(audio_file)
else:
st.info('File size larger than 24mb, applying chunking and transcription')
song = AudioSegment.from_file(audio_file, format='mp3')
# PyDub handles time in milliseconds
twenty_minutes = 20 * 60 * 1000
chunks = song[::twenty_minutes]
transcriptions = []
for i, chunk in enumerate(chunks):
chunk.export(f'chunk_{i}.mp3', format='mp3')
transcriptions.append(load_whisper_api(f'chunk_{i}.mp3'))
results = ','.join(transcriptions)
# Return the transcribed text
st.info("Podcast transcription completed, returning results...")
return results
@st.cache_data
def get_podcast_summary(podcast_transcript):
instructPrompt = """
You are a podcast analyst and your main task is to summarize the key and important points of
the podcast for a busy professional by highlighting the main and important points
to ensure the professional has a sufficient summary of the podcast. Include any questions you consider important or
any points that warrant further investigation.
Please use bulletpoints.
"""
request = instructPrompt + podcast_transcript
chatOutput = client.chat.completions.create(model="gpt-4-turbo-preview",
messages=[{"role": "system", "content": "You are a helpful podcast analyzer assistant"},
{"role": "user", "content": request}
]
)
podcastSummary = chatOutput.choices[0].message.content
return podcastSummary
@st.cache_data
def get_podcast_guest(podcast_transcript):
'''Get guest name, professional title, organization name'''
completion = client.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{"role": "user", "content": podcast_transcript}],
functions=[
{
"name": "get_podcast_guest_information",
"description": "Get information on the podcast guest using their full name and the name of the organization they are part of to search for them on Wikipedia or Google",
"parameters": {
"type": "object",
"properties": {
"guest_name": {
"type": "string",
"description": "The full name of the guest who is being interviewed in the podcast",
},
"guest_organization": {
"type": "string",
"description": "The name or details of the organization that the podcast guest belongs to, works for or runs",
},
"guest_title": {
"type": "string",
"description": "The title, designation or role the podcast guest holds or type of work that the podcast guest in the organization does",
},
},
"required": ["guest_name"],
},
}
],
function_call={"name": "get_podcast_guest_information"}
)
podcast_guest = ""
podcast_guest_org = ""
podcast_guest_title = ""
response_message = completion.choices[0].message.function_call
print(f'func res: {response_message}')
if response_message:
function_name = response_message.name
function_args = json.loads(response_message.arguments)
podcast_guest=function_args.get("guest_name")
podcast_guest_org=function_args.get("guest_organization")
podcast_guest_title=function_args.get("guest_title")
return (podcast_guest,podcast_guest_org,podcast_guest_title)
@st.cache_data
def get_podcast_highlights(podcast_transcript):
instructPrompt = """
Extract some key moments in the podcast. These are typically interesting insights from the guest or critical questions that the host might have put forward. It could also be a discussion on a hot topic or controversial opinion
"""
request = instructPrompt + podcast_transcript
chatOutput = client.chat.completions.create(model="gpt-4-turbo-preview",
messages=[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": podcast_transcript}
]
)
podcastHighlights = chatOutput.choices[0].message.content
return podcastHighlights
@st.cache_data
def process_podcast(url, path='/data/'):
'''Get podcast transcription into json'''
output = {}
podcast_details = get_transcribe_podcast(url, path)
podcast_summary = get_podcast_summary(podcast_details)
podcast_guest_details = get_podcast_guest(podcast_details)
podcast_highlights = get_podcast_highlights(podcast_details)
output['podcast_details'] = podcast_details
output['podcast_summary'] = podcast_summary
output['podcast_guest'] = podcast_guest_details[0]
output['podcast_guest_org'] = podcast_guest_details[1]
output['podcast_guest_title'] = podcast_guest_details[2]
output['podcast_highlights'] = podcast_highlights
return output |