Spaces:
Build error
Build error
File size: 6,967 Bytes
9724ee5 2b8b510 6fd7c54 b628185 2b8b510 3e6c28b 2b8b510 26366c2 2b8b510 3e6c28b 2b8b510 1dc65be 2b8b510 88cec00 2b8b510 9724ee5 23e4bc0 9724ee5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
##Variables
import os
import streamlit as st
import pathlib
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chat_models.openai import ChatOpenAI
from langchain import VectorDBQA
import pandas as pd
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer
from optimum.pipelines import pipeline
import tweepy
import pandas as pd
import numpy as np
import plotly_express as px
import plotly.graph_objects as go
from datetime import datetime as dt
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from datasets import Dataset
from huggingface_hub import Repository
@st.experimental_singleton(suppress_st_warning=True)
def load_models():
'''load sentimant and topic clssification models'''
sent_pipe = pipeline(task,model=sent_model_id, tokenizer=sent_model_id)
topic_pipe = pipeline(task, model=topic_model_id, tokenizer=topic_model_id)
return sent_pipe, topic_pipe
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def process_tweets(df,df_users):
'''process tweets into a dataframe'''
df['author'] = df['author'].astype(np.int64)
df_merged = df.merge(df_users, on='author')
tweet_list = df_merged['tweet'].tolist()
sentiment, topic = pd.DataFrame(sentiment_classifier(tweet_list)), pd.DataFrame(topic_classifier(tweet_list))
sentiment.rename(columns={'score':'sentiment_confidence','label':'sentiment'}, inplace=True)
topic.rename(columns={'score':'topic_confidence','label':'topic'}, inplace=True)
df_group = pd.concat([df_merged,sentiment,topic],axis=1)
df_group[['sentiment_confidence','topic_confidence']] = df_group[['sentiment_confidence','topic_confidence']].round(2).mul(100)
df_tweets = df_group[['creation_time','username','tweet','sentiment','topic','sentiment_confidence','topic_confidence']]
df_tweets = df_tweets.sort_values(by=['creation_time'],ascending=False)
return df_tweets
@st.experimental_singleton(suppress_st_warning=True)
def embed_tweets(file,model,query,_prompt):
'''Process file with latest tweets'''
# Split tweets int chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_text(file)
if model == "hkunlp/instructor-large":
emb = HuggingFaceInstructEmbeddings(model_name=model,
query_instruction='Represent the Financial question for retrieving supporting documents: ',
embed_instruction='Represent the Financial document for retrieval: ')
elif model == "sentence-transformers/all-mpnet-base-v2":
emb = HuggingFaceEmbeddings(model_name=model)
docsearch = FAISS.from_texts(texts, emb)
chain_type_kwargs = {"prompt": _prompt}
chain = VectorDBQA.from_chain_type(
ChatOpenAI(temperature=0),
chain_type="stuff",
vectorstore=docsearch,
chain_type_kwargs=chain_type_kwargs,
k=5
)
result = chain({"query": query})
return result
CONFIG = {
"bearer_token": os.environ.get("bearer_token")
}
sent_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-fintwitter-classification'
topic_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-finance-topic-classification'
task = 'text-classification'
sentiments = {"0": "Bearish", "1": "Bullish", "2": "Neutral"}
topics = {
"0": "Analyst Update",
"1": "Fed | Central Banks",
"2": "Company | Product News",
"3": "Treasuries | Corporate Debt",
"4": "Dividend",
"5": "Earnings",
"6": "Energy | Oil",
"7": "Financials",
"8": "Currencies",
"9": "General News | Opinion",
"10": "Gold | Metals | Materials",
"11": "IPO",
"12": "Legal | Regulation",
"13": "M&A | Investments",
"14": "Macro",
"15": "Markets",
"16": "Politics",
"17": "Personnel Change",
"18": "Stock Commentary",
"19": "Stock Movement",
}
user_name = [
"Investing.com",
"(((The Daily Shot)))",
"Bloomberg Markets",
"FirstSquawk",
"MarketWatch",
"markets",
"FinancialTimes",
"CNBC",
"ReutersBiz",
"BreakingNews",
"LiveSquawk",
"NYSE",
"WSJmarkets",
"FT",
"TheStreet",
"ftfinancenews",
"BloombergTV",
"Nasdaq",
"NYSE",
"federalreserve",
"NewYorkFed",
"sffed",
"WSJCentralBanks",
"RichmondFed",
"ecb",
"stlouisfed",
"WorldBank",
"MarketCurrents",
"OpenOutcrier",
"BullTradeFinder",
"WallStChatter",
"Briefingcom",
"SeekingAlpha",
"realDonaldTrump",
"AswathDamodaran",
"ukarlewitz",
"alphatrends",
"Investor666",
"ACInvestorBlog",
"ZorTrades",
"ScottNations",
"TradersCorner",
"TraderGoalieOne",
"option_snipper",
"jasonleavitt",
"LMT978",
"OptionsHawk",
"andrewbtodd",
"Terri1618",
"SunriseTrader",
"traderstewie",
"TMLTrader",
"IncredibleTrade",
"NYFedResearch",
"YahooFinance",
"business",
"economics",
"IMFNews",
"Market_Screener",
"QuickTake",
"NewsFromBW",
"BNCommodities",
]
user_id = [
"988955288",
"423769635",
"69620713",
"59393368",
"3295423333",
"624413",
"69620713",
"4898091",
"20402945",
"15110357",
"6017542",
"21323268",
"28164923",
"18949452",
"15281391",
"11014272",
"35002876",
"18639734",
"21323268",
"26538229",
"15072071",
"117237387",
"327484803",
"16532451",
"83466368",
"71567590",
"27860681",
"15296897",
"2334614718",
"2222635612",
"3382363841",
"72928001",
"23059499",
"25073877",
"33216611",
"37284991",
"15246621",
"293458690",
"55561590",
"18560146",
"244978426",
"85523269",
"276714687",
"2806294664",
"16205561",
"1064700308",
"61342056",
"184126162",
"405820375",
"787439438964068352",
"52166809",
"2715646770",
"47247213",
"374672240",
"19546277",
"34713362",
"144274618",
"25098482",
"102325185",
"252751061",
"976297820532518914",
"804556370",
]
sentiment_classifier, topic_classifier = load_models()
def convert_user_names(user_name: list):
'''convert user_names to tweepy format'''
users = []
for user in user_name:
users.append(f"from:{user}")
return " OR ".join(users) |