File size: 6,967 Bytes
9724ee5
 
 
2b8b510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd7c54
 
 
 
 
 
 
 
 
 
 
 
 
b628185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b8b510
 
3e6c28b
2b8b510
 
 
26366c2
2b8b510
 
 
 
 
 
 
 
 
 
 
 
 
3e6c28b
2b8b510
 
 
 
1dc65be
 
2b8b510
 
88cec00
2b8b510
 
9724ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e4bc0
 
9724ee5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
##Variables

import os
import streamlit as st
import pathlib

from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chat_models.openai import ChatOpenAI
from langchain import VectorDBQA
import pandas as pd

from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer
from optimum.pipelines import pipeline
import tweepy
import pandas as pd
import numpy as np
import plotly_express as px
import plotly.graph_objects as go
from datetime import datetime as dt
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from datasets import Dataset
from huggingface_hub import Repository

@st.experimental_singleton(suppress_st_warning=True)
def load_models():
    '''load sentimant and topic clssification models'''
    sent_pipe = pipeline(task,model=sent_model_id, tokenizer=sent_model_id)
    topic_pipe = pipeline(task, model=topic_model_id, tokenizer=topic_model_id)
    
    return sent_pipe, topic_pipe

@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def process_tweets(df,df_users):
    '''process tweets into a dataframe'''
    
    df['author'] = df['author'].astype(np.int64)
    
    df_merged = df.merge(df_users, on='author')

    tweet_list = df_merged['tweet'].tolist()
    
    sentiment, topic = pd.DataFrame(sentiment_classifier(tweet_list)), pd.DataFrame(topic_classifier(tweet_list))
    
    sentiment.rename(columns={'score':'sentiment_confidence','label':'sentiment'}, inplace=True)
    
    topic.rename(columns={'score':'topic_confidence','label':'topic'}, inplace=True)
    
    df_group = pd.concat([df_merged,sentiment,topic],axis=1)

    df_group[['sentiment_confidence','topic_confidence']] = df_group[['sentiment_confidence','topic_confidence']].round(2).mul(100)

    df_tweets = df_group[['creation_time','username','tweet','sentiment','topic','sentiment_confidence','topic_confidence']]

    df_tweets = df_tweets.sort_values(by=['creation_time'],ascending=False)

    return df_tweets

@st.experimental_singleton(suppress_st_warning=True)
def embed_tweets(file,model,query,_prompt):
    '''Process file with latest tweets'''

    # Split tweets int chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
    texts = text_splitter.split_text(file)


    if model == "hkunlp/instructor-large":
        emb = HuggingFaceInstructEmbeddings(model_name=model,
                                            query_instruction='Represent the Financial question for retrieving supporting documents: ',
                                            embed_instruction='Represent the Financial document for retrieval: ')
        
    elif model == "sentence-transformers/all-mpnet-base-v2":
        emb = HuggingFaceEmbeddings(model_name=model)

    docsearch = FAISS.from_texts(texts, emb)

    chain_type_kwargs = {"prompt": _prompt}
    chain = VectorDBQA.from_chain_type(
    ChatOpenAI(temperature=0), 
    chain_type="stuff", 
    vectorstore=docsearch,
    chain_type_kwargs=chain_type_kwargs,
    k=5
    )

    result = chain({"query": query})

    return result

CONFIG = {
    "bearer_token": os.environ.get("bearer_token")
              }

sent_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-fintwitter-classification'
topic_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-finance-topic-classification'
task = 'text-classification'

sentiments = {"0": "Bearish", "1": "Bullish", "2": "Neutral"}

topics = {
    "0": "Analyst Update",
    "1": "Fed | Central Banks",
    "2": "Company | Product News",
    "3": "Treasuries | Corporate Debt",
    "4": "Dividend",
    "5": "Earnings",
    "6": "Energy | Oil",
    "7": "Financials",
    "8": "Currencies",
    "9": "General News | Opinion",
    "10": "Gold | Metals | Materials",
    "11": "IPO",
    "12": "Legal | Regulation",
    "13": "M&A | Investments",
    "14": "Macro",
    "15": "Markets",
    "16": "Politics",
    "17": "Personnel Change",
    "18": "Stock Commentary",
    "19": "Stock Movement",
}

user_name = [
    "Investing.com",
    "(((The Daily Shot)))",
    "Bloomberg Markets",
    "FirstSquawk",
    "MarketWatch",
    "markets",
    "FinancialTimes",
    "CNBC",
    "ReutersBiz",
    "BreakingNews",
    "LiveSquawk",
    "NYSE",
    "WSJmarkets",
    "FT",
    "TheStreet",
    "ftfinancenews",
    "BloombergTV",
    "Nasdaq",
    "NYSE",
    "federalreserve",
    "NewYorkFed",
    "sffed",
    "WSJCentralBanks",
    "RichmondFed",
    "ecb",
    "stlouisfed",
    "WorldBank",
    "MarketCurrents",
    "OpenOutcrier",
    "BullTradeFinder",
    "WallStChatter",
    "Briefingcom",
    "SeekingAlpha",
    "realDonaldTrump",
    "AswathDamodaran",
    "ukarlewitz",
    "alphatrends",
    "Investor666",
    "ACInvestorBlog",
    "ZorTrades",
    "ScottNations",
    "TradersCorner",
    "TraderGoalieOne",
    "option_snipper",
    "jasonleavitt",
    "LMT978",
    "OptionsHawk",
    "andrewbtodd",
    "Terri1618",
    "SunriseTrader",
    "traderstewie",
    "TMLTrader",
    "IncredibleTrade",
    "NYFedResearch",
    "YahooFinance",
    "business",
    "economics",
    "IMFNews",
    "Market_Screener",
    "QuickTake",
    "NewsFromBW",
    "BNCommodities",
]

user_id = [
    "988955288",
    "423769635",
    "69620713",
    "59393368",
    "3295423333",
    "624413",
    "69620713",
    "4898091",
    "20402945",
    "15110357",
    "6017542",
    "21323268",
    "28164923",
    "18949452",
    "15281391",
    "11014272",
    "35002876",
    "18639734",
    "21323268",
    "26538229",
    "15072071",
    "117237387",
    "327484803",
    "16532451",
    "83466368",
    "71567590",
    "27860681",
    "15296897",
    "2334614718",
    "2222635612",
    "3382363841",
    "72928001",
    "23059499",
    "25073877",
    "33216611",
    "37284991",
    "15246621",
    "293458690",
    "55561590",
    "18560146",
    "244978426",
    "85523269",
    "276714687",
    "2806294664",
    "16205561",
    "1064700308",
    "61342056",
    "184126162",
    "405820375",
    "787439438964068352",
    "52166809",
    "2715646770",
    "47247213",
    "374672240",
    "19546277",
    "34713362",
    "144274618",
    "25098482",
    "102325185",
    "252751061",
    "976297820532518914",
    "804556370",
]

sentiment_classifier, topic_classifier = load_models()

def convert_user_names(user_name: list):
    '''convert user_names to tweepy format'''
    users = []
    for user in user_name:
        users.append(f"from:{user}")
    
    return " OR ".join(users)