|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from annoy import AnnoyIndex |
|
import numpy as np |
|
|
|
|
|
dataset = load_dataset("nickprock/AIRC_FAQ") |
|
df = pd.DataFrame(dataset["train"]) |
|
|
|
|
|
questions = df["question"].tolist() |
|
answers = df["answer"].tolist() |
|
|
|
|
|
model_names = [ |
|
"nickprock/multi-sentence-BERTino", |
|
"nickprock/sentence-bert-base-italian-uncased", |
|
"nickprock/sentence-bert-base-italian-xxl-uncased", |
|
"nickprock/mmarco-bert-base-italian-uncased", |
|
] |
|
|
|
models = {name: SentenceTransformer(name) for name in model_names} |
|
annoy_indexes = {} |
|
|
|
def build_annoy_index(model_name): |
|
"""Builds an Annoy index for a given model.""" |
|
model = models[model_name] |
|
embeddings = model.encode(answers) |
|
embedding_dim = embeddings.shape[1] |
|
annoy_index = AnnoyIndex(embedding_dim, "angular") |
|
for i, embedding in enumerate(embeddings): |
|
annoy_index.add_item(i, embedding) |
|
annoy_index.build(10) |
|
return annoy_index |
|
|
|
|
|
for model_name in model_names: |
|
annoy_indexes[model_name] = build_annoy_index(model_name) |
|
|
|
def find_similar_answer_annoy(question, model_name): |
|
"""Finds the most similar answer using Annoy.""" |
|
model = models[model_name] |
|
annoy_index = annoy_indexes[model_name] |
|
question_embedding = model.encode(question) |
|
nearest_neighbors = annoy_index.get_nns_by_vector(question_embedding, 1) |
|
best_answer_index = nearest_neighbors[0] |
|
return answers[best_answer_index] |
|
|
|
def compare_models_annoy(question, model1_name, model2_name, model3_name, model4_name): |
|
"""Compares the results of different models using Annoy.""" |
|
answer1 = find_similar_answer_annoy(question, model1_name) |
|
answer2 = find_similar_answer_annoy(question, model2_name) |
|
answer3 = find_similar_answer_annoy(question, model3_name) |
|
answer4 = find_similar_answer_annoy(question, model4_name) |
|
return answer1, answer2, answer3, answer4 |
|
|
|
iface = gr.Interface( |
|
fn=compare_models_annoy, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter your question here..."), |
|
gr.Dropdown(model_names, value=model_names[0], label="Model 1"), |
|
gr.Dropdown(model_names, value=model_names[1], label="Model 2"), |
|
gr.Dropdown(model_names, value=model_names[2], label="Model 3"), |
|
gr.Dropdown(model_names, value=model_names[3], label="Model 4"), |
|
], |
|
outputs=[ |
|
gr.Textbox(label=model_names[0]), |
|
gr.Textbox(label=model_names[1]), |
|
gr.Textbox(label=model_names[2]), |
|
gr.Textbox(label=model_names[3]), |
|
], |
|
title="Sentence Transformer Model Comparison (Annoy)", |
|
description="Enter a question and compare the answers generated by different sentence-transformer models (using Annoy for faster search).", |
|
) |
|
|
|
iface.launch() |