Update app.py
Browse files
app.py
CHANGED
@@ -3,76 +3,107 @@ from sentence_transformers import SentenceTransformer
|
|
3 |
import pandas as pd
|
4 |
from datasets import load_dataset
|
5 |
from annoy import AnnoyIndex
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
dataset
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
annoy_index
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
from datasets import load_dataset
|
5 |
from annoy import AnnoyIndex
|
6 |
+
import os
|
7 |
+
|
8 |
+
try:
|
9 |
+
# Load the dataset (Italian subset, test split)
|
10 |
+
dataset = load_dataset("PhilipMay/stsb_multi_mt", name="it", split="test")
|
11 |
+
df = pd.DataFrame(dataset)
|
12 |
+
|
13 |
+
# Extract sentences (sentence1 and sentence2)
|
14 |
+
sentences1 = df["sentence1"].tolist()
|
15 |
+
sentences2 = df["sentence2"].tolist()
|
16 |
+
|
17 |
+
# Sentence-transformers models to test
|
18 |
+
model_names = [
|
19 |
+
"nickprock/multi-sentence-BERTino",
|
20 |
+
"nickprock/sentence-bert-base-italian-uncased",
|
21 |
+
"nickprock/sentence-bert-base-italian-xxl-uncased",
|
22 |
+
"nickprock/mmarco-bert-base-italian-uncased",
|
23 |
+
]
|
24 |
+
|
25 |
+
models = {name: SentenceTransformer(name) for name in model_names}
|
26 |
+
annoy_indexes1 = {} # Store Annoy indexes for sentence1
|
27 |
+
annoy_indexes2 = {} # Store Annoy indexes for sentence2
|
28 |
+
|
29 |
+
def build_annoy_index(model_name, sentences):
|
30 |
+
"""Builds an Annoy index for a given model and sentences."""
|
31 |
+
model = models[model_name]
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
embedding_dim = embeddings.shape[1]
|
34 |
+
annoy_index = AnnoyIndex(embedding_dim, "angular") # Use angular distance for cosine similarity
|
35 |
+
for i, embedding in enumerate(embeddings):
|
36 |
+
annoy_index.add_item(i, embedding)
|
37 |
+
annoy_index.build(10) # Build with 10 trees
|
38 |
+
return annoy_index
|
39 |
+
|
40 |
+
# Build Annoy indexes for each model
|
41 |
+
for model_name in model_names:
|
42 |
+
annoy_indexes1[model_name] = build_annoy_index(model_name, sentences1)
|
43 |
+
annoy_indexes2[model_name] = build_annoy_index(model_name, sentences2)
|
44 |
+
|
45 |
+
def find_similar_sentence_annoy(sentence, model_name, sentence_list, annoy_index):
|
46 |
+
"""Finds the most similar sentence using Annoy."""
|
47 |
+
model = models[model_name]
|
48 |
+
sentence_embedding = model.encode(sentence)
|
49 |
+
nearest_neighbors = annoy_index[model_name].get_nns_by_vector(sentence_embedding, 1)
|
50 |
+
best_sentence_index = nearest_neighbors[0]
|
51 |
+
return sentence_list[best_sentence_index]
|
52 |
+
|
53 |
+
def compare_models_annoy(sentence, model1_name, model2_name, model3_name, model4_name):
|
54 |
+
"""Compares the results of different models using Annoy."""
|
55 |
+
sentence1_results = {}
|
56 |
+
sentence2_results = {}
|
57 |
+
|
58 |
+
sentence1_results[model1_name] = find_similar_sentence_annoy(sentence, model1_name, sentences1, annoy_indexes1)
|
59 |
+
sentence1_results[model2_name] = find_similar_sentence_annoy(sentence, model2_name, sentences1, annoy_indexes1)
|
60 |
+
sentence1_results[model3_name] = find_similar_sentence_annoy(sentence, model3_name, sentences1, annoy_indexes1)
|
61 |
+
sentence1_results[model4_name] = find_similar_sentence_annoy(sentence, model4_name, sentences1, annoy_indexes1)
|
62 |
+
|
63 |
+
sentence2_results[model1_name] = find_similar_sentence_annoy(sentence, model1_name, sentences2, annoy_indexes2)
|
64 |
+
sentence2_results[model2_name] = find_similar_sentence_annoy(sentence, model2_name, sentences2, annoy_indexes2)
|
65 |
+
sentence2_results[model3_name] = find_similar_sentence_annoy(sentence, model3_name, sentences2, annoy_indexes2)
|
66 |
+
sentence2_results[model4_name] = find_similar_sentence_annoy(sentence, model4_name, sentences2, annoy_indexes2)
|
67 |
+
|
68 |
+
return sentence1_results, sentence2_results
|
69 |
+
|
70 |
+
def format_results(sentence1_results, sentence2_results):
|
71 |
+
"""Formats the results for display in Gradio."""
|
72 |
+
output_text = ""
|
73 |
+
for model_name in model_names:
|
74 |
+
output_text += f"**{model_name}**\n"
|
75 |
+
output_text += f"Most Similar Sentence from sentence1: {sentence1_results[model_name]}\n"
|
76 |
+
output_text += f"Most Similar Sentence from sentence2: {sentence2_results[model_name]}\n\n"
|
77 |
+
return output_text
|
78 |
+
|
79 |
+
def gradio_interface(sentence, model1_name, model2_name, model3_name, model4_name):
|
80 |
+
"""Gradio interface function."""
|
81 |
+
sentence1_results, sentence2_results = compare_models_annoy(sentence, model1_name, model2_name, model3_name, model4_name)
|
82 |
+
return format_results(sentence1_results, sentence2_results)
|
83 |
+
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=gradio_interface,
|
86 |
+
inputs=[
|
87 |
+
gr.Textbox(lines=2, placeholder="Enter your sentence here..."),
|
88 |
+
gr.Dropdown(model_names, value=model_names[0], label="Model 1"),
|
89 |
+
gr.Dropdown(model_names, value=model_names[1], label="Model 2"),
|
90 |
+
gr.Dropdown(model_names, value=model_names[2], label="Model 3"),
|
91 |
+
gr.Dropdown(model_names, value=model_names[3], label="Model 4"),
|
92 |
+
],
|
93 |
+
outputs=gr.Markdown(),
|
94 |
+
title="Sentence Transformer Model Comparison (Annoy)",
|
95 |
+
description="Enter a sentence and compare the most similar sentences generated by different sentence-transformer models (using Annoy for faster search) from both sentence1 and sentence2.",
|
96 |
+
)
|
97 |
+
|
98 |
+
iface.launch()
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error loading dataset: {e}")
|
102 |
+
iface = gr.Interface(
|
103 |
+
fn=lambda: "Dataset loading failed. Check console for details.",
|
104 |
+
inputs=[],
|
105 |
+
outputs=gr.Textbox(),
|
106 |
+
title="Dataset Loading Error",
|
107 |
+
description="There was an error loading the dataset.",
|
108 |
+
)
|
109 |
+
iface.launch()
|