nicolaakmal
commited on
Commit
•
bd49b42
1
Parent(s):
a72d28b
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def generate_response(prompt):
|
11 |
-
# Mengatur input untuk model menggunakan tokenizer
|
12 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
13 |
-
|
14 |
-
# Menggunakan TextStreamer untuk streaming teks keluaran
|
15 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
16 |
outputs = model.generate(
|
17 |
input_ids=inputs["input_ids"],
|
@@ -21,12 +25,10 @@ def generate_response(prompt):
|
|
21 |
temperature=1.5,
|
22 |
top_p=0.1
|
23 |
)
|
24 |
-
|
25 |
-
# Menghasilkan respons dari streamer
|
26 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
return response
|
28 |
|
29 |
-
#
|
30 |
iface = gr.Interface(
|
31 |
fn=generate_response,
|
32 |
inputs="text",
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
3 |
+
from peft import PeftModel # Pastikan PEFT terinstal
|
4 |
|
5 |
+
# Tentukan model dasar dan LoRA weights
|
6 |
+
base_model_name = "meta-llama/Llama-3.2-3B-Instruct" # Model dasar sesuai yang ada di gambar
|
7 |
+
lora_model_name = "nicolaakmal/llama32-lora-finetuned-v3"
|
|
|
8 |
|
9 |
+
# Load tokenizer dan base model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
12 |
+
|
13 |
+
# Load LoRA model sebagai PeftModel
|
14 |
+
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
15 |
+
|
16 |
+
# Fungsi untuk menghasilkan respons
|
17 |
def generate_response(prompt):
|
|
|
18 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
|
|
|
|
19 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
20 |
outputs = model.generate(
|
21 |
input_ids=inputs["input_ids"],
|
|
|
25 |
temperature=1.5,
|
26 |
top_p=0.1
|
27 |
)
|
|
|
|
|
28 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
return response
|
30 |
|
31 |
+
# Interface Gradio
|
32 |
iface = gr.Interface(
|
33 |
fn=generate_response,
|
34 |
inputs="text",
|