Spaces:
Runtime error
Runtime error
Commit
·
8744ba9
1
Parent(s):
84bd684
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from langchain.document_transformers import Html2TextTransformer
|
|
11 |
from langchain.callbacks import get_openai_callback
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.memory import ConversationBufferWindowMemory
|
|
|
14 |
|
15 |
import asyncio
|
16 |
from langchain.docstore.document import Document
|
@@ -19,13 +20,24 @@ import os
|
|
19 |
from dotenv import load_dotenv
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
#loading openai api keys
|
23 |
load_dotenv()
|
24 |
|
25 |
|
26 |
st.title("🤖 Chat with your website 🤖")
|
27 |
|
28 |
-
|
29 |
|
30 |
question = st.text_area("Chiedi pure:")
|
31 |
|
@@ -57,6 +69,10 @@ memory = ConversationBufferWindowMemory(
|
|
57 |
)
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
60 |
if st.button("Invia", type="primary"):
|
61 |
|
62 |
loader = AsyncHtmlLoader(input_url)
|
@@ -79,18 +95,20 @@ if st.button("Invia", type="primary"):
|
|
79 |
embedding=openai_embeddings)
|
80 |
|
81 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
82 |
-
|
83 |
relevant_docs = retriever.get_relevant_documents(question)
|
84 |
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
#qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt})
|
96 |
|
@@ -99,8 +117,9 @@ if st.button("Invia", type="primary"):
|
|
99 |
|
100 |
with get_openai_callback() as cb:
|
101 |
#run the chain and generate response
|
102 |
-
response =
|
103 |
print(cb)
|
104 |
|
|
|
105 |
answer.write(response["answer"])
|
106 |
st.write(relevant_docs)
|
|
|
11 |
from langchain.callbacks import get_openai_callback
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.memory import ConversationBufferWindowMemory
|
14 |
+
from streamlit_chat import message
|
15 |
|
16 |
import asyncio
|
17 |
from langchain.docstore.document import Document
|
|
|
20 |
from dotenv import load_dotenv
|
21 |
|
22 |
|
23 |
+
|
24 |
+
if 'conversation' not in st.session_state:
|
25 |
+
st.session_state['conversation'] = None
|
26 |
+
if 'messages' not in st.session_state:
|
27 |
+
st.session_state['messages'] = []
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
st.sidebar.title("URL")
|
32 |
+
input_url = st.sidebar.text_input("Inserisci url:")
|
33 |
+
|
34 |
#loading openai api keys
|
35 |
load_dotenv()
|
36 |
|
37 |
|
38 |
st.title("🤖 Chat with your website 🤖")
|
39 |
|
40 |
+
|
41 |
|
42 |
question = st.text_area("Chiedi pure:")
|
43 |
|
|
|
69 |
)
|
70 |
|
71 |
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
if st.button("Invia", type="primary"):
|
77 |
|
78 |
loader = AsyncHtmlLoader(input_url)
|
|
|
95 |
embedding=openai_embeddings)
|
96 |
|
97 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
98 |
+
|
99 |
relevant_docs = retriever.get_relevant_documents(question)
|
100 |
|
101 |
+
if st.session_state['conversation'] is None:
|
102 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
103 |
|
104 |
+
st.session_state['conversation'] = ConversationalRetrievalChain.from_llm(
|
105 |
+
llm,
|
106 |
+
chain_type='stuff',
|
107 |
+
retriever=retriever,
|
108 |
+
memory=memory,
|
109 |
+
combine_docs_chain_kwargs={"prompt": prompt},
|
110 |
+
verbose=True
|
111 |
+
)
|
112 |
|
113 |
#qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt})
|
114 |
|
|
|
117 |
|
118 |
with get_openai_callback() as cb:
|
119 |
#run the chain and generate response
|
120 |
+
response = st.session_state['conversation'](question)
|
121 |
print(cb)
|
122 |
|
123 |
+
|
124 |
answer.write(response["answer"])
|
125 |
st.write(relevant_docs)
|