from config import * from diffusers import AutoPipelineForText2Image import torch from argparse import ArgumentParser import humanize import datetime as dt def generate_image(path, imgfile, prompt): model_id = "stabilityai/sdxl-turbo" pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = prompt image = pipe(prompt,num_inference_steps=1, guidance_scale=0.0).images[0] image.save("images\output.png") # pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") # image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0.0).images[0] # image.save(os.path.join(path, imgfile)) #image.save(path) if __name__ == '__main__': path_id = str(int(time.time())) path = os.path.join("temp", "image", path_id) os.makedirs(path, exist_ok=True) parser = ArgumentParser() parser.add_argument("--prompt", default="Young asian. professional woman with long, blonde hair, smiling slightly", help="avatar prompt") args = parser.parse_args() tstart = time.time() generate_image(path, "avatar.png", f"hyper-realistic photo, centered, {args.prompt}, \ rim lighting, studio lighting, looking at the camera, front ") print("total time:", humanize.naturaldelta(dt.timedelta(seconds=int(time.time() - tstart))))