import time from config import * import cv2 import glob import numpy as np import os from basicsr.utils import imwrite from pathos.pools import ParallelPool import subprocess import platform from mutagen.wave import WAVE import tqdm from p_tqdm import * import torch from PIL import Image from RealESRGAN import RealESRGAN def vid2frames(vidPath, framesOutPath): print(vidPath) print(framesOutPath) vidcap = cv2.VideoCapture(vidPath) success,image = vidcap.read() frame = 1 while success: cv2.imwrite(os.path.join(framesOutPath, str(frame).zfill(5) + '.png'), image) success,image = vidcap.read() frame += 1 def restore_frames(audiofilePath, videoOutPath, improveOutputPath): no_of_frames = count_files(improveOutputPath) audio_duration = get_audio_duration(audiofilePath) framesPath = improveOutputPath + "/%5d.png" fps = no_of_frames/audio_duration command = f"ffmpeg -y -r {fps} -f image2 -i {framesPath} -i {audiofilePath} -vcodec mpeg4 -b:v 20000k {videoOutPath}" print(command) subprocess.call(command, shell=platform.system() != 'Windows') def get_audio_duration(audioPath): audio = WAVE(audioPath) duration = audio.info.length return duration def count_files(directory): return len([name for name in os.listdir(directory) if os.path.isfile(os.path.join(directory, name))]) def improve(disassembledPath, improvedPath): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RealESRGAN(device, scale=4) model.load_weights('weights/RealESRGAN_x4.pth', download=True) files = glob.glob(os.path.join(disassembledPath,"*.png")) # pool = ParallelPool(nodes=20) # results = pool.amap(real_esrgan, files, [model]*len(files), [improvedPath] * len(files)) results = t_map(real_esrgan, files, [model]*len(files), [improvedPath] * len(files)) def real_esrgan(img_path, model, improvedPath): image = Image.open(img_path).convert('RGB') sr_image = model.predict(image) img_name = os.path.basename(img_path) sr_image.save(os.path.join(improvedPath, img_name))